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Interaction Networks

Biological interaction networks are often used as prior information when
analyzing high throughput ‘omics data
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Vertices: genes or proteins
Edges: Interactions between genes/proteins

Proteins with similar functions are connected in
an interaction network
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Altered Subnetwork Problem (also called network modules, active subnetworks)

High

Given:
1) Interaction network G = (V,E)
2) Vertex scores X,

Low

Goal: Identify high-scoring subnetworks of G (“altered subnetworks”)

Note: Different from DREAM competition (Lenore Cowen keynote), which does not use vertex scores



Altered subnetworks reveal important pathways

Altered subnetworks = functionally related genes/proteins (eg disease genes)

Somatic mutations in cancer
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Altered Subnetwork Problem:

Given:

1) Network G = (V,E)

2) Vertexscores X, (usually derived from p-values)
Goal: Identify high-scoring subnetworks G

Genome-wide association studies (GWAS)
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Many algorithms developed over past 20 years for identifying altered subnetworks

Table 1| Some recent bioinformatics tools for module extraction through network integration

Tool URL

Active-module detection through network projection of omics data

jActiveModules http://apps.cytoscape.org/apps/jactivemodules

MATISSE http://acgt.cs.tau.ac.il/matiss

PinnacleZ http://apps.cytoscape.org/apps/pinnaclez

GXNA http://statstanford.edu/~serban/gxna

BioNet http://bionet.bicapps.biozentrum.uni-wuerzburg.de
COSINE http://cran.r-proj rg/w k INE/index.htm
SANDY http://sandy.topnet.gersteinlab.org

HotNet http://ccmbweb.ccv.brown.edu/hotnet

PARADIGM http://sbenz.github.com/Paradigm

MEMo http://cbio.mskcc.org/memo

Multi-Dendrix http://compbio.cs.brown.edu/software

RegMOD http://www.biomedcentral.com/1471-2105/11/26/additional
NetWalk and FunWalk http://n kersuite.or:

ResponseNet http://bicinfo.bgu.ac.il/respnet

ClustEx http://www.mybiosoftware.com/pathway-analysis/5495
SAMBA http://acgt.cs.tau.ac.il/samba

cMonkey http://bonneaulab.bio.nyu.edu/biclustering.html
COBRAv2.0 http://opencobra.sourceforge.net/openCOBRA/Welcome.html
TieDIE https://syshiowiki.soe.ucsc.edu/tiedie

Network comparisons across species to identify conserved modules

PathBLAST http: h I

NetworkBLAST http://www.cs.tau.ac.il/~bnet/networkblast.htm
NetworkBLAST-M http://www.cs tau.ac.il/~bnet/License-nbm.htm

IsoRankN http://groups.csailmit.edu/cb/mna

Graemlin http://graemlin.stanford.edu

NeXus http://csbio.cs.umn.edu/neXus/help.html

Multi-species cMonkey

Differential analysis of interaction networks to identify dynamic modules

DDN
DNA

http://www.cbil.ece.vt.edu/software.htm

http://www.somnathdatta.org/Supp/DNA

Integration of diverse types of interaction networks to identify composite modules

PanGIA

http://prosecco.ucsd.edu/PanGIA

Mitra et al, Nature Reviews Genetics (2013)
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Table 1| Software tools based on network propagation

Tool

Function prediction

DSD* and
capDSD*

GeneMANIA 13
Mashup®®
RIDDLE"

Goal

Function prediction

Function prediction
Function prediction

Function prediction

Disease characterization

CATAPULT®

Cytoscape
‘diffuse’ service'™

DADA?®
Exome Walker’
GUILD™®

HotNet2 (REF. 30)
NBS#
NetQTL”

PRINCIPLE'®

SNF®°
TieDIE*
ToppGene!”’

Gene prioritization
General propagation

Gene prioritization
Gene prioritization

Gene prioritization

Module detection
Patient stratification

Gene prioritization and
module detection

Gene prioritization and
module detection

Patient stratification
Module detection

Gene prioritization

Type

Single network

Single network
Integrative

Single network

Integrative
1D and 2D

1D
1D
1D

2D
Integrative
1D

1D

Integrative
Integrative
1D

Platform

Web server and
software for download

Cytoscape plugin
Software for download

Web server

Web server and
software for download

Software for download

Software for download
Web server

Software for download

Software for download
Software for download

Software for download
Cytoscape plugin

Software for download
Software for download

Web server

Web site

http://dsd.cs.tufts.edu/server/ and http://dsd.cs.tufts.

edu/capdsd

http://apps.cytoscape.org/apps/genemania

http://mashup.csail.mit.edu/

http://www.functionalnet.org/RIDDLE/

http://marcottelab.org/index.php/Catapult

* Native in version 3.5 and greater
http://compbi

http://compbio.charite.de/ExomeWalker

http://sbi.imim.es/web/index.php/research/software/
guildsoftware

http://compbio.cs.brown.edu/projects/hotnet2/
http://chianti.ucsd.edu/~mhofree/NBS/

https://www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/
index.cgi#netqtl

http://www.cs.tau.ac.il/~bnet/software/PrincePlugin/

http://compbio.cs.toronto.edu/SNF/SNF/Software.html
https://sysbiowiki.soe.ucsc.edu/tiedie

https://toppgene.cchmc.org/

Cowen et al, Nature Reviews Genetics (2017)



Early algorithms model altered subnetwork as a
connected subgraph

For example, seminal algorithms jActiveModules and heinz solve optimization
problems over connected subgraphs S

max E Xv IMax E Wy,
SCV /]S SCV

veES

jActiveModules/Cytoscape (Ideker et al, 2002) heinz/BioNet (Dittrich, Klau et al, 2008)

Altered Subnetwork Problem:
E Given:

1) Network G = (V,E)
Low 2) Vertex scores X, (usually derived from p-values)
Goal: Identify high-scoring subnetworks G




Connectivity-based algorithms have theoretical

guarantees

In previous work (RECOMB 2020, ICML 2021) we defined a generative model for
connected altered subnetworks and:

1. Showed that existing connectivity-based methods (jActiveModules, heinz)
compute maximum likelihood estimators (MLE), but MLE is statistically biased

estimator of subnetwork size

2. Derived NetMix algorithm to reduce MLE bias

T
=PI &
-

Altered subnetwork Maximum Likelihood Estimator (MLE) Low



Challenge: Connectivity is a weak topological constraint!

Networks have small diameter — most subnetworks are “almost connected”
Algorithms not much better compared to not using interaction network
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Network propagation (network diffusion)

Use of random walks to “propagate”/smooth vertex scores across network

High

B Network

] propagation
Low

Direct neighbour Shortest path Network propagation

Network propagation: a universal amplifier of genetic
associations

Lenore Cowen, Trey Ideker, Benjamin J. Raphael & Roded Sharan

Nature Reviews Genetics 18, 551-562 (2017) | Cite this article

18k Accesses | 257 Citations | 41 Altmetric | Metrics
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Network propagation uses global network structure

0.2
1 0.0
Cowen et al (Nature Reviews Genetics 2017)
Network propagation = Matrix-vector multiplication
Name Similarity matrix

Random walk Wk
Random walk with restart a(l-(1-a)W)™

Diffusion kernel e~ oW

Random walk
similarity matrix Vertex scores Cowen et al (Nature Reviews Genetics 2017)
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Network propagation is standard for ranking vertices

’ Known High

O Unknown B

—) :

Low

Rank vertices based on similarity to vertices w/ known characteristics e.g. genes associated
with a specific disease (binary vertex scores X, )

Google

PageRank

B_ BN
! Personalized PageRank is asymptotically optimal for

Random walk onal
R , ranking in random graph models (PNAS 2017)
similarity matrix Vertex scores




How to use network propagation to identify altered
subnetworks?

Network
propagation

N

T
0 I I
-y

Low

Question: how to identify altered subnetwork from
propagated gene scores?

12
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Existing network propagation methods use ad hoc heuristics to

identify altered subnetworks

Network
propagation

PRINCE

Associating Genes and Protein Complexes with Disease via
Network Propagation

Oron Vanunu B3, Oded Magger B3, Eytan Ruppin, Tomer Shlomi, Roded Sharan [E]

Published: January 15, 2010 « https://doi.org/10.1371/journal.pcbi.1000641

High
J HotNet2

Pan-cancer network analysis identifies combinations of

— rare somatic mutations across pathways and protein

L complexes

— Mark D M Leiserson, Fabio Vandin, Hsin-Ta Wu, Jason R Dobson, Jonathan V Eldridge, Jacob L Thomas,

Alexandra Papoutsaki, Younhun Kim, Beifang Niu, Michael McLellan, Michael S Lawrence, Abel

Gonzalez-Perez, David Tamborero, Yuwei Cheng, Gregory A Ryslik, Nuria Lopez-Bigas, Gad Getz, Li

— Ding & Benjamin J Raphael

Nature Genetics 47,106-114 (2015) | Cite this article

39k Accesses | 500 Citations | 122 Altmetric | Metrics

Ex: PRINCE: “We aim at inferring densely connected protein complexes that contain
high scoring proteins ... we start with the top 100 [propagated] scoring proteins as

seeds ... To each seed we iteratively add a neighboring protein with the highest
score ... A refinement phase takes place where proteins are removed from a
putative complex to ensure that ... its member proteins are densely interacting.”

Issue: These algorithms lack rigorous statistical guarantees — hard to investigate

fundamental issues like bias




Recent work shows existing approaches biased towards “high

centrality” vertices
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Algorithms benchmark against existing network algorithms — can hide biases shared across methods

DOMINO: a network-based active module
identification algorithm with reduced rate of false

calls
Hagai Levi, Ran Elkon @, Ron Shamir

Author Information
Molecular Systems Biology (2021) 17: €9593 https://doi.org/10.15252/msb.20209593

“Our study reports on a different bias that is
prevalent in AMI solutions: their tendency to report
non-specific GO terms. ...we observed that many
enriched GO terms also appear on permuted
datasets, suggesting that such enrichment stems
from some proprieties of the network, algorithm, or
the data that bias the results.”

On the limits of active module identification

Briefings in Bioinformatics, Volume 22, Issue 5, September 2021, bbab066,

https://doi.org/10.1093/bib/bbab066
Published: 29 March 2021 Article history v

“Our results indicate that classical but also

Olga Lazareva, Jan Baumbach, Markus List, David B Blumenthal ™« Author Notes _
supposedly bias-aware [altered subnetwork

algorithms] extract disease modules based on
the node degree”




Our work:

e Extend altered subnetwork generative model

* Model different altered subnetwork topologies (“subnetwork families”)

* Derive propagation family — “approximates” subnetworks found by network
propagation

* NetMix2 algorithm for altered subnetwork identification with
different subnetwork families

* w/ propagation family: principled network propagation algorithm for
altered subnetwork identification

* Simple baselines for evaluating network algorithms — “scores only”
and “network only”

16



17

Generative model: Altered Subnetwork Distribution

* G=(V, E) is interaction network
S is subnetwork family (set of subsets of V)
« A € Sisthe altered subnetwork

Vertex scores (X, )vcv are distributed as
( .
D,, ifveA,

Dy, otherwise

Xy ~ 4

\

Da = altered distribution (unknown)

Db = background distribution (typically known)
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Generative model: Altered Subnetwork Distribution

* G=(V, E) is interaction network

« S is subnetwork family (set of subsets of V) TROOTL Y
« A € Sisthealtered subnetwork o 1 P
L@
Vertex scores (X, )ycy are distributed as QO
. D, = altered distribution Q)@
X,U N Da; ifv e A; (unknown) ,\_)/3 {_\/.\\\ :
Db, otherwise Dy, = background distribution O _/ )
(typically known)
Example of distributions: z-scores Examples of subnetwork families:
D. — N(,u 1) Connected family S = CG = connected subgraphs S € V
a y
Db _ N(O 1) Edge-dense family S = 8G,p = subgraphs with density(S) > p
T y

Cut family S — TG,p = subgraphs with cut(S) < p
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Generative model: Altered Subnetwork Distribution

* G=(V, E) is interaction network
S is subnetwork family (set of subsets of V)
« A € Sisthe altered subnetwork

Vertex scores (X, )vcv are distributed as

X, ~ {Da, ifveA,

Dy, otherwise

Altered Subnetwork Problem (ASP): Given graph G, subnetwork family S and

vertex scores (X )vev , find altered subnetwork A.

ASP = estimating parameters of distribution




Hard to solve ASP

Small distance between
distributions Da,Db

Easy to solve ASP
without network

Large distance between
distributions D, Dy,

Altered Subnetwork Distribution

Subnetwork family & Altered subnetwork
Altered subnetwork A € S problem: Given X,

Vertex scores and S find A
x D., ifve A,

~Y
Dy, otherwise

20
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‘ S | is large

Hard to solve ASP

Easy to solve ASP

Hard to solve ASP without network

Small distance between Large distance between

distributions Da, Dy, Easy to solve ASP distributions D, Dy,
without vertex scores

Altered Subnetwork Distribution

Subnetwork family & Altered subnetwork
Altered subnetwork A € S problem: Given X,

Vertex scores and S find A
f : X D,, ifveA,
is small ! Dy, otherwise
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‘ S | is large

Hard to solve ASP

“Sweet spot” - both network
(subnetwork family) and vertex scores
are necessary

] Easy to solve ASP
Hard to solve ASP Il without network
[
‘I
'1' '\\ ,’ \\
I ) { 1
Small distance between \\ /’ Large distance bet\ﬁ@en ,’
distributions Da, Dy, Easy to solve ASP ~r distributions Dy, Dy,

without vertex scores

Important to compare against
naive baselines that use
(1) “scores only”

-~ e—1(2) “network only”
3 J‘S‘ is small
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Propagation family

S = ./\/l(sjp : Subgraphs S with M, , > d for p fraction of (u,v) € S

Vertices are “close”

via random walk (also require M, ., = ¢ if M is not
symmetric, eg personalized PageRank)

In paper: theory and simulations show propagation family approximates subnetworks found by
network propagation methods

network
propagation

o
»

Altered Subnetwork Distribution

Subnetwork family S Altered subnetwork
Altered subnetwork A € S problem: Given X,
Random walk Vertex vertex scores and & find A

D,, ifve A,

Vertex scores X, X,

~Y
Dy, otherwise

similarity matrix M scores X,




Propagation family

S = ./\/l(s,p : Subgraphs S with My, > ¢ for p fraction of (u,v) € S

Vertices are “close”
via random walk

(also require M, > 0 if M is not

network
propagation

Vertex scores X,

Random walk
similarity matrix M

Vertex
scores X,

symmetric, eg personalized PageRank)

Alternatively: edge-dense subnetworks of
“similarity threshold graph”

Interaction network G

Similarity threshold graph Gg

25



NetMix2 Ot

Vertex scores (Xy,)vev Altered subnetwork A € S

High Step 1: Estimate size |E| of altered

I A subnetwork A using local FDR (non- Wwith size |S| = | A| and largest total
vertex score X,

Step 2: Compute subnetwork Ses

parametric method)

l’;!;li

Interaction network

Subnetwork family S

Connected family CG

Edge-dense family gG,p

Cut family TG,p

Propagation family M Lt
. Similarity matrix
: (Personalized PageRank) Similarity threshold graph




Simulations: Propagation family corresponds to the subnetworks
identified by network propagation
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Connected Cut Edge-dense Propagation

Subnetwork Family &

Bl Scores Only [] NetMix2 [l Network Propagation [l Network Only

Scores only = {vertices w/ top-|A| scores} Network only = {vertices w/ top-|A| vertex centrality}

Network propagation = {vertices w/ top-|A| propagated scores}

G = HINT+HI interaction network with |G|=15000 nodes (Leiserson et al 2015)
Altered subnetwork A of size |A|=0.01n selected uniformly at random from subnetwork family S



Results: somatic mutations in cancer

NetMix2 outperforms other methods at identifying previously reported driver

mutations in cancer.

STRING network
CGC OncoKB TCGA
Method Subnetwork size Number F-measure Number F-measure Number F-measure
| NetMix2 280 132 0.3 133 0.313 151 0.546 |
NetMix 313* 129 0.282 130 0.295 147 0.502
Heinz (FDR=0.01) 335 139 0.297 138 0.306 156 0.513
NetSig 773 145 0.211 172 0.257 84 0.161
Hierarchical HotNet 246 73 0.172 70 0.172 74 0.285
Network ProEgation 280 86 0.195 89 0.210 98 0.354
Scores-only 280 126 0.286 127 0.3 145 0.524
Network-only 280 77 0.175 83 0.196 55 0.199

G = STRING protein interaction network

Vertex scores X, = MutSIg2CV z-scores computed based on

frequency of somatic mutations in TCGA tumor samples

Note: “Scores-only” has good performance — how helpful is interaction network?
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Results: GWAS

Recent study by Carlin et al (iScience 2019) — evaluates how well methods identify known disease

reference genes
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Results: GWAS :

Recent study by Carlin et al (iScience 2019) — evaluates how well methods identify known disease
reference genes

A Schizophrenia B Bipolar Disorder c Type 1 Diabetes
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06 - 06
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U .
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AUPRC

Schizophrenia

0.144
0.124
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(N) Network alone is
sufficient to identify
reference genes

(S) Scores alone are
sufficient to identify
reference genes

(B) Both network
and scores help
identify reference
genes

B Network Propagation [l Network Only (PageRank)



35

NetMix2 results on diseases where both network
and scores help

Rheumatoid Arthritis

Reference Genes

251

20+

15+

104

5<

0_

Bipolar Disorder

50+

40-

301

201

10

0_

B Scores Only [ Network Propagation

Type 2 Diabetes

251

20

151

101

5<

0_

[ ] NetMix2 M Network Only (PageRank)

(B) Both network
and scores help
identify reference
genes

NetMix2 outperforms network propagation on 2/3 diseases



Summary

e Generative model for altered subnetworks from different
subnetwork families

* Propagation family approximates subnetworks identified by
network propagation

* NetMix2 algorithm: principled network propagation approach for
altered subnetwork identification

* Important to correctly benchmark network algorithms against
simple “scores only” and “network only” baselines!
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