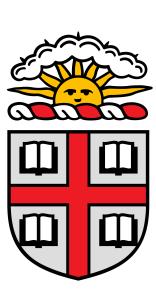
Quantifying and Reducing Bias in Maximum Likelihood Estimation of Structured Anomalies

<u>Uthsav Chitra</u>¹, Kimberly Ding¹, Jasper C.H. Lee², Benjamin J. Raphael¹

¹ Princeton University, ² Brown University

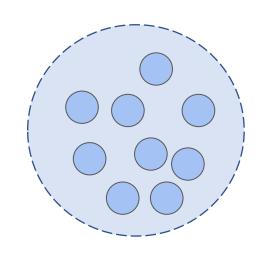


Anomaly Detection

The identification of rare, irregular, or otherwise aberrant patterns (i.e. anomalies) in data

Many applications in ML and statistics:

- Real-time system monitoring
 - identifying anomalies in real-time data (ML model data, sensors, ...)
- Healthcare/biological data
 - identifying groups of patients with anomalous reactions to certain drugs
- Anomaly detection in graphs
 - identifying disease outbreak regions (e.g. COVID) or anomalous activity in social networks



Structured Anomaly Detection

Depending on type of data, anomaly often has specific structure

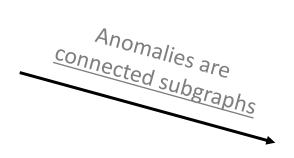
- Real-time system monitor
 - Identifying anomalies in real-time data
- Healthcare/biological data
 - Identifying drugs w/ anomalous reactions for specific groups of patients

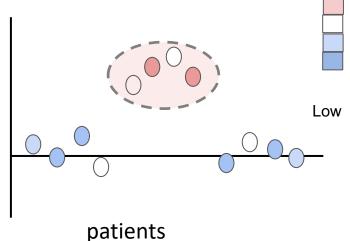
Anomalies are submatrices

Anomalies are

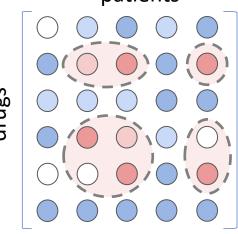
time interval

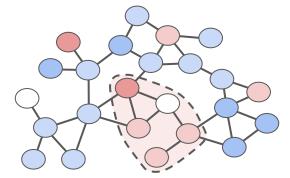
- Anomalies in graphs
 - Identifying disease outbreak hotspots or anomalous activity in social networks





High



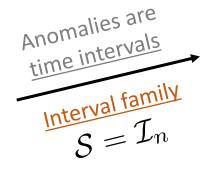


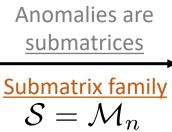
Structured Anomaly Detection

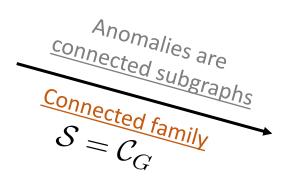
Depending on type of data, anomaly often has specific structure described by an anomaly family ${\mathcal S}$ or set of all possible anomalies

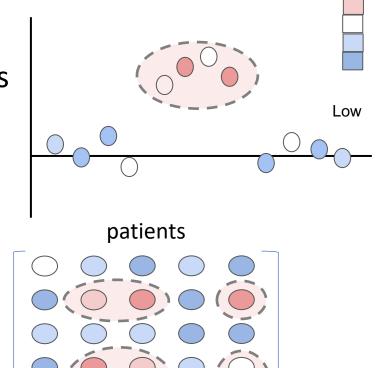
- Real-time system monitor
 - Identifying anomalies in real-time data
- Healthcare/biological data
 - Identifying drugs w/ anomalous reactions for specific groups of patients
- Anomalies are submatrices Submatrix family

- Anomalies in graphs
 - Identifying disease outbreak hotspots or anomalous activity in social networks

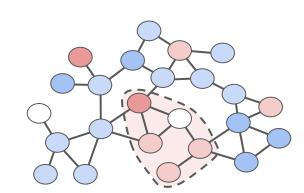








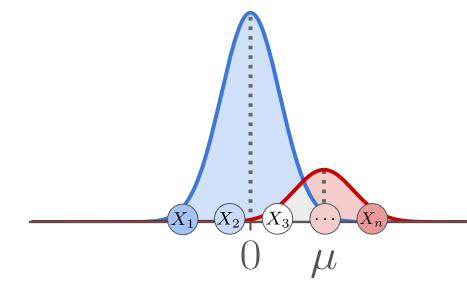
High



Structured Normal Means Setting

Data X_1, \ldots, X_n independently distributed as

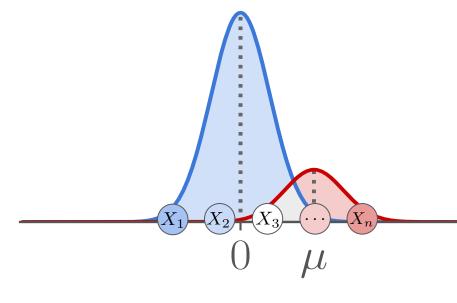
$$X_i \sim \begin{cases} N(\mu, 1) & \text{if } i \in A \\ N(0, 1) & \text{otherwise} \end{cases}$$



Structured Normal Means Setting

Data X_1, \ldots, X_n independently distributed as

$$X_i \sim \begin{cases} N(\mu, 1) & \text{if } i \in A \\ N(0, 1) & \text{otherwise} \end{cases}$$



Normal means settings have a long history in statistics, with classical methods using the normal means to model <u>unstructured</u> anomalies in p-value data

• Localfdr/empirical Bayes methods by Efron et al, Higher criticism by Donoho and Jin, ...

Recent work in ML/stats study $\underline{structured}$ normal means settings for different anomaly families $\mathcal S$

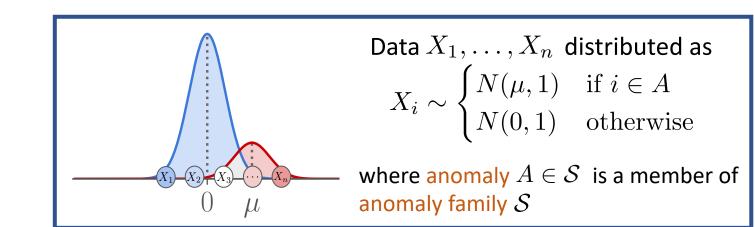
- Intervals: Jeng et al (JASA 2010)
- Submatrices: Kolar et al (NeurIPS 2011), Chen and Xu (ICML 2014), Brennan et al (COLT 2018), Liu and A-C (KDD 2019)
- Connected subgraphs: Qian et al (NeurIPS 2014), Aksoylar et al (ICML 2017), Cadena et al (AAAI 2018/TKDD 2019)
- Subgraphs w/ small cut: Sharpnack et al (NeurIPS 2013/AISTATS 2013)
- Other: Brennan et al (ICML 2020)

Standard approach for anomaly detection is to compute the MLE

Maximum Likelihood Estimator (MLE):
$$\widehat{A}_{\mathrm{MLE}} = \arg\max_{S \in \mathcal{S}} \frac{1}{\sqrt{|S|}} \sum_{i \in S} X_i$$

Many papers focus on efficient algorithms for (approximately) computing the MLE.

However statistical properties of the MLE are not as well understood



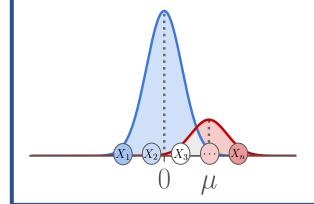
The MLE is (near-)optimal for some anomaly families...

- Jeng et al (JASA 2010) show (asymptotic) "near-optimality" for interval family $\mathcal{S}=\mathcal{I}_n$
- Liu and A-C (KDD 2019) show similar guarantees for submatrix family $\mathcal{S} = \mathcal{M}_N$

$$o = Ivi_N$$

Maximum Likelihood Estimator (MLE):

$$\widehat{A}_{\text{MLE}} = \arg\max_{S \in \mathcal{S}} \frac{1}{\sqrt{|S|}} \sum_{i \in S} X_i$$



Data X_1, \dots, X_n distributed as $X_i \sim \begin{cases} N(\mu,1) & \text{if } i \in A \\ N(0,1) & \text{otherwise} \end{cases}$

... but MLE is **not optimal** for other anomaly families

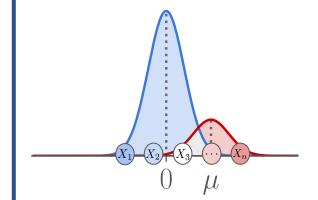
- Jeng et al (JASA 2010) show (asymptotic) "near-optimality" for interval family $\mathcal{S}=\mathcal{I}_n$
- Liu and A-C (KDD 2019) show similar guarantees for submatrix family $\mathcal{S} = \mathcal{M}_N$

In recent prior work, we (RECOMB 2020) observed that MLE is a **biased** estimator for the connected family

$$S = C_G$$

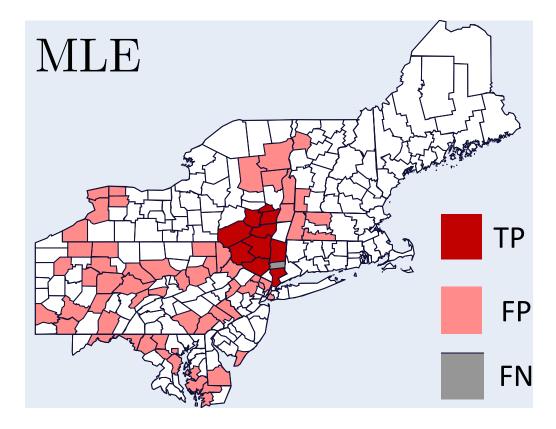
Maximum Likelihood Estimator (MLE):

$$\widehat{A}_{\text{MLE}} = \arg\max_{S \in \mathcal{S}} \frac{1}{\sqrt{|S|}} \sum_{i \in S} X_i$$



Data X_1, \dots, X_n distributed as $X_i \sim \begin{cases} N(\mu,1) & \text{if } i \in A \\ N(0,1) & \text{otherwise} \end{cases}$

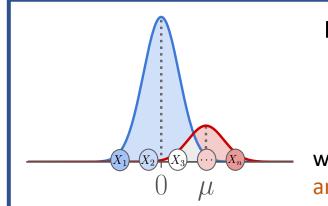
MLE is **biased** for connected subgraphs



For connected family $\mathcal{S} = \mathcal{C}_G$ MLE is **biased** estimator of size |A| of anomaly, i.e. on average

$$|\widehat{A}_{\mathrm{MLE}}| >> |A|$$

Connected anomaly A of size |A|=11 is implanted in graph of NEast USA (Standard benchmark for spatial scan statistics)



Data X_1, \dots, X_n distributed as $X_i \sim \begin{cases} N(\mu,1) & \text{if } i \in A \\ N(0,1) & \text{otherwise} \end{cases}$

Questions

1. For which anomaly families ${\cal S}$ is the MLE $\widehat{A}_{
m MLE}$ biased?

2. For anomaly families ${\cal S}$ where MLE $\widehat{A}_{\rm MLE}$ is biased, is there a better estimator?

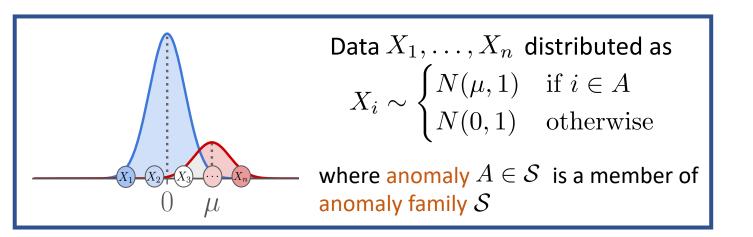
Our Contributions

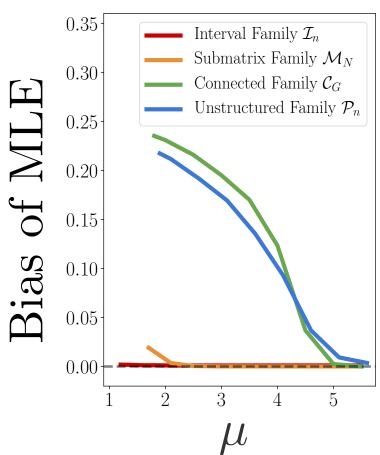
1. For which anomaly families ${\cal S}$ is the MLE $\widehat{A}_{
m MLE}$ biased?

Our conjecture: MLE is biased \leftrightarrow number of sets in anomaly family \mathcal{S} that contain the anomaly A is *exponential*

(→) We prove. Generalizes previous results on interval/submatrix family, which have sub-exponential size

(←) Give partial proof/empirical evidence



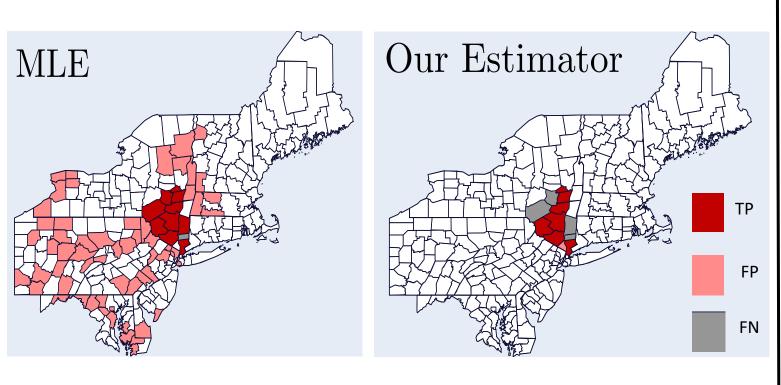


Our Contributions

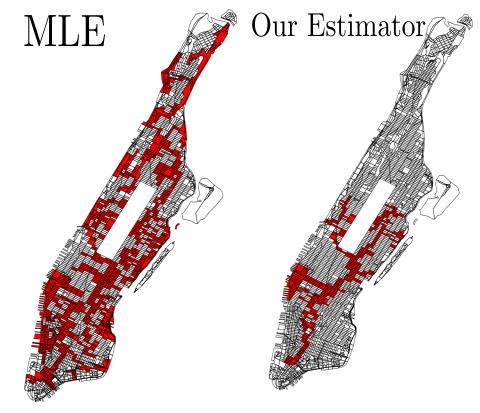
2. For anomaly families ${\cal S}$ where MLE $\widehat{A}_{
m MLE}$ is biased, is there a better estimator?

Our work: asymptotically unbiased estimator for all anomaly families ${\cal S}$

Key idea: Estimate anomaly size |A| by fitting data to mixture model

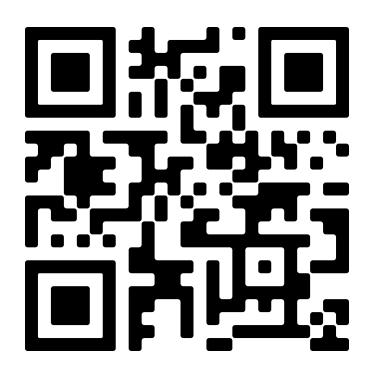


Simulated Data



Real Data (Breast Cancer in NYC)

Thank you for listening!



If you have any questions or comments, stop by the poster session ©

Scan the QR code for the arXiv

Paper link: https://arxiv.org/abs/2007.07878