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Anomaly Detection

The identification of rare, irregular, or otherwise aberrant patterns (i.e. anomalies) in data

Many applications in ML and statistics:

* Real-time system monitoring O

* identifying anomalies in real-time data (ML model @
data, sensors, ...)

* Healthcare/biological data e - ®
* identifying groups of patients with anomalous /// O \\\
reactions to certain drugs {,’ OO0 O \}
\\\ Q QQ ///
* Anomaly detection in graphs . OO0 ~
* identifying disease outbreak regions (e.g. COVID) TS -

or anomalous activity in social networks O



Structured Anomaly Detection

Depending on type of data, anomaly often has specific structure
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* Anomalies in graphs

* |ldentifying disease outbreak hotspots
or anomalous activity in social
networks




Structured Anomaly Detection

Depending on type of data, anomaly often has specific structure

described by an anomaly family S or set of all possible anomalies

* Real-time system monitor
* ldentifying anomalies in real-time data

* Healthcare/biological data

* |dentifying drugs w/ anomalous
reactions for specific groups of patients

Anomalies are
submatrices

drugs

Submatrix family

S=M,

* Anomalies in graphs

* |ldentifying disease outbreak hotspots
or anomalous activity in social
networks
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Structured Normal Means Setting

Data X1, ..., X, independently distributed as
(N(u,1) ific A
X; ~ 3
N (0,1) otherwise S ‘@‘6‘@‘

where anomaly A € S is a member of anomaly family &



Structured Normal Means Setting

Data X1, ..., X, independently distributed as
(N(u,1) ific A

N(0,1) otherwise Xy @@‘6‘@
‘ 17

where anomaly A € S is a member of anomaly family &

Normal means settings have a long history in statistics, with classical methods using the
normal means to model unstructured anomalies in p-value data
 Localfdr/empirical Bayes methods by Efron et al, Higher criticism by Donoho and Jin, ...

Recent work in ML/stats study structured normal means settings for different anomaly families S
* Intervals: Jeng et al (JASA 2010)
* Submatrices: Kolar et al (NeurIPS 2011), Chen and Xu (ICML 2014), Brennan et al (COLT 2018), Liu and A-C (KDD 2019)
* Connected subgraphs: Qian et al (NeurlPS 2014), Aksoylar et al (ICML 2017), Cadena et al (AAAI 2018/TKDD 2019)
» Subgraphs w/ small cut: Sharpnack et al (NeurlPS 2013/AISTATS 2013)
e Other: Brennan et al (ICML 2020)




Standard approach for anomaly detection is to compute the MLE

Maximum Likelihood Estimator (MLE): AMLE — arg max

Ses f ZXi

1€S5

Many papers focus on efficient algorithms for (approximately) computing

the MLE.

However statistical properties of the MLE are not as well understood
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Data X1, ...,X,, distributed as

v N itiea
' N(0,1) otherwise

where anomaly A € § is a member of
anomaly family &




The MLE is (near-)optimal for some anomaly families...

 Jengetal (JASA 2010) show
(asymptotic) “near-optimality” for
interval family § = 7,

* Liuand A-C (KDD 2019) show similar
guarantees for submatrix family
S =Mn

. - . Data X1, ..., X, distributed as
Maximum Likelihood Estimator (IMLE):

v N itiea
A\ 1 ¥ ' N(0,1) otherwise
MLE = alr'gInax E i
SeS / ’S’ icS &) @@‘6‘@» where anomaly A € § is a member of
0 u anomaly family S




... but MLE is not optimal for other anomaly families

 Jengetal (JASA 2010) show In recent prior work, we (RECOMB
(asymptotic) “near-optimality” for 2020) observed that MLE is a biased
interval family S = 7, estimator for the connected family
S =Cqg

* Liuand A-C (KDD 2019) show similar
guarantees for submatrix family

S =My

Data X1, ...,.X,, distributed as
N(u,1) ifie A

~ 1 Air N(0,1) otherwise

AMLE = arg max g X; ’

SeS / ’S’ _ %) @A@‘Q@» where anomaly A € S is a member of
€S .
0 u anomaly family S

Maximum Likelihood Estimator (IMLE):




MILE is biased for connected subgraphs

MLE For connected family S = Cg
MLE is biased estimator of size |A| of
anomaly, i.e. on average
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Connected anomaly A of size |A|=11is —
implanted in graph of NEast USA Data X1, ..., X, distributed as
(Standard benchmark for spatial scan X, ~ N(p, 1) ifi e A
statistics) N(0,1) otherwise

E)-) @‘6‘@» where anomaly A € § is a member of
0 u anomaly family S




Questions

1. For which anomaly families § is the MLE A\MLE biased?

2. For anomaly families S where MLE EMLE Is biased, is there a better
estimator?



Our Contributions

1. For which anomaly families § is the MLE A\MLE biased?

Our conjecture: MLE is biased €> number of sets in anomaly family S
that contain the anomaly A is exponential
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Our Contributions

2. For anomaly families § where MLE Ay 1 i is biased, is there a better estimator?

Our work: asymptotically unbiased estimator for all anomaly families S

Key idea: Estimate anomaly size |A|[ by fitting data to mixture model

7 Our Estimator
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Simulated Data Real Data (Breast Cancer in NYC)
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