Proof that $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic

Uthsav Chitra

March 14, 2017

1 Preliminary Results

We present here a more group-theoretic proof that the unit group of $\mathbb{Z}/p\mathbb{Z}$ is cyclic.

Definition 1.1

Let G be a finite, abelian group, and let $g \in G$. We define **the order of** g, or ord(g), as the least positive integer n such that $g^n = 1$. Alternatively, we can define ord(g) as the greatest common factor of $\{x \in \mathbb{Z} : g^x = 1\}$. (Why are these equal?)

We first prove some lemmas. In what follows, assume *G* is a finite, abelian group.

Lemma 1.2

Let $a \in G$, with ord(a) = n. Then, for any $k \mid n$, there exists a $c \in G$ with ord(c) = k.

Proof. Take $c = a^{n/k}$.

Lemma 1.3

Let $a, b \in G$, with ord(a) = n, ord(b) = m, with (n, m) = 1. Then, there exists $c \in G$ with ord(c) = nm.

Proof. I claim ab has order nm. Since $(ab)^{nm} = (a^n)^m (b^m)^n = 1^m 1^n = 1$, we can write $\operatorname{ord}(ab) = k$, for some $k \mid nm$. Now,

$$(ab)^k = 1 \implies a^k = b^{-k}. \tag{1}$$

Raising both sides to the mth power yields $a^{mk} = 1$. Thus, $n \mid mk$. But since (n, m) = 1, this implies $n \mid k$. Switching the role of a and b, we also see that $m \mid k$. Thus, $nm \mid k$, so we have k = nm.

Lemma 1.4

Let $a, b \in G$, with ord(a) = n and ord(b) = m. Then, there exists $c \in G$ such that ord(c) = [n, m].

Proof. By the first lemma, there exists $c_1, c_2, c_3 \in G$ with

$$\operatorname{ord}(c_1) = (n, m) \tag{2}$$

$$\operatorname{ord}(c_2) = \frac{n}{(n,m)} \tag{3}$$

$$\operatorname{ord}(c_3) = \frac{m}{(n,m)}. (4)$$

Since each of the above orders are pairwise relatively prime, by the second lemma, there exists $c \in G$ such that

$$\operatorname{ord}(c) = (n, m) \cdot \frac{n}{(n, m)} \cdot \frac{m}{(n, m)} = \frac{nm}{(n, m)} = [n, m], \tag{5}$$

as desired. □

We include the following lemma for completeness. Its proof can be found in Chapter 4 of the textbook (Ireland-Rosen).

Lemma 1.5

For $d \mid p-1, x^d-1$ has exactly d roots in $(\mathbb{Z}/p\mathbb{Z})^{\times}$.

2 Proof

Theorem 2.1

 $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic.

Proof. Assume not. Let $\operatorname{ord}(i) = m_i$, let $G = (\mathbb{Z}/p\mathbb{Z})^{\times}$, and let $d = [m_1, ..., m_{p-1}]$. By Lemma 1.4, there exists $c \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ with $\operatorname{ord}(c) = d$. Since $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is not cyclic, d must be a strict divisor of p-1, since otherwise c would be a generator.

Now, for every $i \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, since $m_i \mid d$, we have

$$i^{d} - 1 = (i^{m_{i}})^{d/m_{i}} - 1 = 1^{d/m_{i}} - 1 = 0.$$
(6)

Thus, every $i \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ is a root of $x^d - 1$, so $x^d - 1$ has p - 1 roots. However, by Lemma 1.5, $x^d - 1$ has exactly d roots. Since d , we have a contradiction.