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1 Primes 1 mod 15

First, to show that 1 mod 15 case, we present the proof that there are infinitely many primes
1 mod n for any n > 1, and then set n = 15.

Let n be an integer greater than 1. For the sake of contradiction, suppose there are a finite
number of primes 1 mod n. Define S = {primes p > 0 : p ≡ 1 (mod n)}. Aince S is finite, let
P be the (finite) product of all elements of S. Then, one can consider the evaluation of n-th
cyclotomic polynomial at lP , Φn(lP ), where l is a positive integer such that Φn(lP ) > 1 (such
an l surely exists since the coefficient of the highest-order term of Φn(x) is 1. Note that, since
the constant term of Φn(x) is ±1, p - Φn(x) for all p ∈ S.

Now, let q be a (possible the?) positive prime factor of Φn(lP ). Thus, Φn(lP ) ≡ 0 (mod q).
Since Φn(x)|xn − 1, we have that (lP )n − 1 ≡ 0 (mod q) ⇒ (lP )n ≡ 1 (mod q), so the order
of lP (modulo q) divides n. Note that, if the order of lP is equal to n, then by Fermat’s
Little Theorem we have that n|q − 1 ⇒ q ≡ 1 (mod n). Because q|Φn(P ), this means that
q /∈ S. However, since S was supposed to be the set of all positive primes 1 (mod n), this is a
contradiction! Thus, all we have to do is show that the order of lP is n.

It’s here that we use the key fact about cyclotomic polynomials: for all positive integers

n, xn − 1 =
∏
d|n
d<n

Φd(x) · Φn(x). Thus, if the order of lP were d (where d is a proper factor of

n), then we would have (lP )d − 1 ≡ 0 (mod q). This would imply that xd − 1 has a root mod
q (alongside Φn(x) by construction), which means that xn − 1 has a double root at x = lP .
However, the derivative of xn − 1 is nxn−1. n(lP )n−1 is not congruent to 0 mod q unless n ≡ 0
(mod q), but since q|n− 1 and (n, n− 1) = 1, this is impossible, so we are done.

2 Primes 4 mod 15

First, note that by Quadratic Reciprocity, 5 and −3 are both perfect squares mod p (for a prime
p) iff p ≡ 1, 4 (mod 15). This fact is crucial to the solvability of this special case of Dirichlet’s
Theorem!

Now, the genius insight is to consider the following polynomial: f(x) = (x−(
√

5+
√
−3))(x−

(
√

5 −
√
−3))(x − (−

√
5 +
√
−3))(x − (−

√
5 −
√
−3)). First, by grouping the first two terms

and the second two terms, we get the following identity:

f(x) = (x2 + 8− 2x
√

5)(x2 + 8 + 2x
√

5)

= (x2 + 8)2 − 5(2x)2 (1)

Next, by grouping the first term with the third term and the second term with the fourth
term, we get:
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f(x) = (x2 − 8− 2x
√
−3)(x2 + 8 + 2x

√
−3)

= (x2 + 8)2 + 3(2x)2 (2)

So like in the previous case, suppose for the sake of contradiction that there are a finite of
primes 4 mod 15, let S = {prime p > 0 : p ≡ 4 (mod 15)}, and let P be the (finite) product of
all elements in S. Now consider f(15lP ), where l is a positive integer such that f(15lP ) > 1
(which is possible since as x→∞, f(x)→∞. Again, note that p - f(15lP ) for all p ∈ S since
the constant term of f(x) is 64. Furthermore, one can easily see that f(15lP ) ≡ 4 (mod 15).

Let q be a positive prime factor of f(15lP ). From equation (1), we have that:

((15lP )2 + 8)2 − 5(30lP )2 ≡ 0 (mod q)⇒
(

(15lP )2 + 8

30lP

)2

≡ 5 (mod q)

The careful reader can work out the cases when 30lP ≡ 0 (mod q) (since l can change, one
needs to essentially deal with q = 2, 3, 5, but this isn’t too hard). Thus, 5 is a quadratic residue
mod q. Similarly, equation 2 yields that −3 is a quadratic residue mod q. By an earlier remark,
this shows that q must be 1 or 4 mod 15.

We’re almost at the finish line now! We’ve shown that no prime factor 4 mod 15 divides
f(15lP ) (since p - f(15lP ) for all p ∈ S, that f(15lP ) ≡ 4 mod 15, and that every prime factor
of f(15lP ) must be 1 or 4 mod 15. But because 1n ≡ 1 mod 15, not every prime factor of
f(15lP ) can be 1 mod 15, and so we’ve reached a contradiction.
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