Infinitely Many Primes 1 and 4 mod 15

Uthsav Chitra

August 27, 2014

1 Primes 1 mod 15

First, to show that 1 mod 15 case, we present the proof that there are infinitely many primes 1 mod n for any n > 1, and then set n = 15.

Let n be an integer greater than 1. For the sake of contradiction, suppose there are a finite number of primes 1 mod n. Define $S = \{\text{primes } p > 0 : p \equiv 1 \pmod{n}\}$. Aince S is finite, let P be the (finite) product of all elements of S. Then, one can consider the evaluation of n-th cyclotomic polynomial at lP, $\Phi_n(lP)$, where l is a positive integer such that $\Phi_n(lP) > 1$ (such an l surely exists since the coefficient of the highest-order term of $\Phi_n(x)$ is 1. Note that, since the constant term of $\Phi_n(x)$ is ± 1 , $p \nmid \Phi_n(x)$ for all $p \in S$.

Now, let q be a (possible the?) positive prime factor of $\Phi_n(lP)$. Thus, $\Phi_n(lP) \equiv 0 \pmod{q}$. Since $\Phi_n(x)|x^n-1$, we have that $(lP)^n-1 \equiv 0 \pmod{q} \Rightarrow (lP)^n \equiv 1 \pmod{q}$, so the order of lP (modulo q) divides n. Note that, if the order of lP is equal to n, then by Fermat's Little Theorem we have that $n|q-1 \Rightarrow q \equiv 1 \pmod{n}$. Because $q|\Phi_n(P)$, this means that $q \notin S$. However, since S was supposed to be the set of all positive primes $1 \pmod{n}$, this is a contradiction! Thus, all we have to do is show that the order of lP is n.

It's here that we use the key fact about cyclotomic polynomials: for all positive integers $n, x^n - 1 = \prod_{\substack{d \mid n \\ d \leq n}} \Phi_d(x) \cdot \Phi_n(x)$. Thus, if the order of lP were d (where d is a proper factor of

n), then we would have $(lP)^d - 1 \equiv 0 \pmod{q}$. This would imply that $x^d - 1$ has a root mod q (alongside $\Phi_n(x)$ by construction), which means that $x^n - 1$ has a double root at x = lP. However, the derivative of $x^n - 1$ is nx^{n-1} . $n(lP)^{n-1}$ is not congruent to 0 mod q unless $n \equiv 0 \pmod{q}$, but since q|n-1 and (n,n-1)=1, this is impossible, so we are done.

2 Primes 4 mod 15

First, note that by Quadratic Reciprocity, 5 and -3 are both perfect squares mod p (for a prime p) iff $p \equiv 1, 4 \pmod{15}$. This fact is crucial to the solvability of this special case of Dirichlet's Theorem!

Now, the genius insight is to consider the following polynomial: $f(x) = (x - (\sqrt{5} + \sqrt{-3}))(x - (\sqrt{5} - \sqrt{-3}))(x - (-\sqrt{5} + \sqrt{-3}))(x - (-\sqrt{5} - \sqrt{-3}))$. First, by grouping the first two terms and the second two terms, we get the following identity:

$$f(x) = (x^2 + 8 - 2x\sqrt{5})(x^2 + 8 + 2x\sqrt{5})$$

= $(x^2 + 8)^2 - 5(2x)^2$ (1)

Next, by grouping the first term with the third term and the second term with the fourth term, we get:

$$f(x) = (x^2 - 8 - 2x\sqrt{-3})(x^2 + 8 + 2x\sqrt{-3})$$
$$= (x^2 + 8)^2 + 3(2x)^2$$
(2)

So like in the previous case, suppose for the sake of contradiction that there are a finite of primes 4 mod 15, let $S = \{\text{prime } p > 0 : p \equiv 4 \pmod{15}\}$, and let P be the (finite) product of all elements in S. Now consider f(15lP), where l is a positive integer such that f(15lP) > 1 (which is possible since as $x \to \infty$, $f(x) \to \infty$. Again, note that $p \nmid f(15lP)$ for all $p \in S$ since the constant term of f(x) is 64. Furthermore, one can easily see that $f(15lP) \equiv 4 \pmod{15}$.

Let q be a positive prime factor of f(15lP). From equation (1), we have that:

$$((15lP)^2 + 8)^2 - 5(30lP)^2 \equiv 0 \pmod{q} \Rightarrow \left(\frac{(15lP)^2 + 8}{30lP}\right)^2 \equiv 5 \pmod{q}$$

The careful reader can work out the cases when $30lP \equiv 0 \pmod{q}$ (since l can change, one needs to essentially deal with q=2,3,5, but this isn't too hard). Thus, 5 is a quadratic residue mod q. Similarly, equation 2 yields that -3 is a quadratic residue mod q. By an earlier remark, this shows that q must be 1 or 4 mod 15.

We're almost at the finish line now! We've shown that no prime factor 4 mod 15 divides f(15lP) (since $p \nmid f(15lP)$ for all $p \in S$, that $f(15lP) \equiv 4 \mod 15$, and that every prime factor of f(15lP) must be 1 or 4 mod 15. But because $1^n \equiv 1 \mod 15$, not every prime factor of f(15lP) can be 1 mod 15, and so we've reached a contradiction.