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1 Primes 1 mod 15

First, to show that 1 mod 15 case, we present the proof that there are infinitely many primes
1 mod n for any n > 1, and then set n = 15.

Let n be an integer greater than 1. For the sake of contradiction, suppose there are a finite
number of primes 1 mod n. Define S = {primes p > 0: p =1 (mod n)}. Aince S is finite, let
P be the (finite) product of all elements of S. Then, one can consider the evaluation of n-th
cyclotomic polynomial at [P, ®,,(IP), where [ is a positive integer such that ®,,(IP) > 1 (such
an [ surely exists since the coefficient of the highest-order term of ®,,(x) is 1. Note that, since
the constant term of @, (z) is £1, p{ ®,(x) for all p € S.

Now, let ¢ be a (possible the?) positive prime factor of ®,,(IP). Thus, ®,(IP) =0 (mod q).
Since ®,(x)|z"™ — 1, we have that (IP)" —1 =0 (mod ¢) = (IP)" =1 (mod q), so the order
of [P (modulo ¢) divides n. Note that, if the order of [P is equal to n, then by Fermat’s
Little Theorem we have that n|g — 1 = ¢ = 1 (mod n). Because ¢|®,(P), this means that
q ¢ S. However, since S was supposed to be the set of all positive primes 1 (mod n), this is a
contradiction! Thus, all we have to do is show that the order of [P is n.

It’s here that we use the key fact about cyclotomic polynomials: for all positive integers
n, 2" —1= H ®4(x) - Dp(z). Thus, if the order of [P were d (where d is a proper factor of

dl

d<n

n), then we would have (IP)? —1 =0 (mod ¢). This would imply that 2% — 1 has a root mod
q (alongside ®,(z) by construction), which means that ™ — 1 has a double root at x = [P.
However, the derivative of ™ — 1 is nz"~!. n(IP)"~! is not congruent to 0 mod g unless n = 0
(mod ¢), but since g|n — 1 and (n,n — 1) = 1, this is impossible, so we are done.

2 Primes 4 mod 15

First, note that by Quadratic Reciprocity, 5 and —3 are both perfect squares mod p (for a prime
p) iff p=1,4 (mod 15). This fact is crucial to the solvability of this special case of Dirichlet’s
Theorem!

Now, the genius insight is to consider the following polynomial: f(x) = (z—(v5+v—=3))(z—
(V5 —V=3)(z — (—V5+ V=3))(z — (—V5 — v/=3)). First, by grouping the first two terms

and the second two terms, we get the following identity:

f(x) = (2% 4 8 — 22V5)(2® + 8 + 22V/5)
= (2% +8)* — 5(22)* (1)

Next, by grouping the first term with the third term and the second term with the fourth
term, we get:



f(z) = (2* — 8 — 22/=3)(2® + 8 + 22/ —3)
= (z* +8)” 4 3(2z)* (2)

So like in the previous case, suppose for the sake of contradiction that there are a finite of
primes 4 mod 15, let S = {prime p > 0: p =4 (mod 15)}, and let P be the (finite) product of
all elements in S. Now consider f(15/P), where [ is a positive integer such that f(15/P) > 1
(which is possible since as x — oo, f(x) — oco. Again, note that p{ f(15/P) for all p € S since
the constant term of f(x) is 64. Furthermore, one can easily see that f(15/P) =4 (mod 15).

Let ¢ be a positive prime factor of f(15/P). From equation (1), we have that:

2
(151P)% + 8)2 — 5(301P)2 = 0 (mod ¢) = <(15”3)2+8)

30lP

The careful reader can work out the cases when 30IP = 0 (mod ¢) (since [ can change, one
needs to essentially deal with ¢ = 2, 3,5, but this isn’t too hard). Thus, 5 is a quadratic residue
mod ¢q. Similarly, equation 2 yields that —3 is a quadratic residue mod ¢. By an earlier remark,
this shows that ¢ must be 1 or 4 mod 15.

We're almost at the finish line now! We’'ve shown that no prime factor 4 mod 15 divides
f(151P) (since p 1 f(151P) for all p € S, that f(15[P) =4 mod 15, and that every prime factor
of f(15[P) must be 1 or 4 mod 15. But because 1™ = 1 mod 15, not every prime factor of
f(151P) can be 1 mod 15, and so we’ve reached a contradiction.
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