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1 Sept.7,2016

This day’s notes aren’t very organized, since the professor was mostly showing cool results in algebraic
number theory.

In the beginning of class we went over some logistical things. Then Professor Silverman motivated
the course by talking about Pythagorean triples and then Fermat’s Last Theorem. I didn’t take notes
on this stuff but it was interesting— basically, we talked about how you can solve for all solutions of
the Pythagorean formula in the following way. First, we have

a2+b2=c*=a’=(c+b)c-D). (1)

Using some parity arguments, we can assume that both b and c aren’t even. Thus ged(b+c, b—c) = 1,
so we can write

c+b=md

2 )

c—b=n

and solve for a, b, c. Now if we want to solve a? + b? = cP, we can try the same thing. This leads
us to the following rearrangement:

n-1
o = e~ 3)
i=0

where ( is a primitive pth root of unity. But now, we have two problems. One, how do we formalize
that each factor on the right is relatively prime? And how do we formalize that each factor on the right
is a prime power? Of course, this won’t work, but this motivates a lot of algebraic number theory.

4 )

Definition 1.1

A number field is a finite extension of Q.

Definition 1.2

The ring of integers of a number field K is

Rk = {@ € K : « is the root of a monic polynomial in Z[x]} (4)

This gives us the followng diagram.

Ry ——> K

7 —— Q

However, it is not obvious (and we need to show) that Rx is a ring. Algebraic number theory is
essentially the study of Rg.
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1.1 Things we’ll look at

Topics and results we will look at in the semester include:
Ry is a ring (though often not a PID or UFD).
+ Every (nonzero) ideal uniquely factors as a product of prime ideals.
« The set of fractional ideals forms a group under multiplication.

+ Motivated by the going-up and going-down theorems, take p € Z, and consider the ideal pRx =
{1{, - - - which uniquely factors into prime ideals. If K/Q is Galois, then Gal(K/Q) acts on the
prime ideals {; and permutes them. We will look at this in more depth.

We also look at two finiteness theorems.

4 )

Theorem 1.3
Given a number field K, the ideal class group of K (really of Rk, but people incorrectly say K) is

group of ideals in K
K= — —. (5)
group of principal ideals in K

Then Hg is finite.

|\ J

One famous conjecture is that there are infinitely many d > 0 such that HQ( Vi) = (0), that is, Q(Vd)
is a PID.

For the second finiteness theorem, we look at the units, rather than ideals, since studying ideals
tells us nothing about the units.

Theorem 1.4
Let K be a number field. Then Ry, is a finitely generated abelian group.

By the fundamental theorem of finitely generated abelian groups,

R} = (finite group) x Z". (6)
This leads us to the main result.
Theorem 1.5 (Dirichlet’s Unit Theorem)
Define
r1 = #(embeddings K — R) (7)
1
ry = R #(embeddings K — C with K /> R). (8)
Then, we have
R} = (finite cyclic group) x Z"*"71. 9)

The % is there because we don’t want to consider both an embedding of K < C and its complex
conjugate as different maps.



2 Sept. 9, 2016 Math 2530: Number Theory Uthsav Chitra

1.2 Analytic Theory

Define the zeta function .
1
(8=~ (10)
n=1

It converges for R(s) > 1, and {(1) diverges. We also have, by unique factorization,

()= (1 - }%)_ . (11)

p

In fact, the fact that {(1) diverges, together with the above factorization, can be used to show that
there are infinitely many primes. This fact is attributed to Euclid, though he probably didn’t prove it
this way.

It also can be used to show that }’, 1% diverges. The rate of convergence is

1
Z — =~ loglogx (12)
p<x p
which is very, very slow.
We can also write .
{(s) = = + (analytic function). (13)
s F—

This lets us use complex analysis to get information about the primes via equation 11.
Now, how can we generalize these facts to generic number fields? We need the following definition.

Definition 1.6
The norm of I is NI = #(Rg/I).

Then we define the zeta function over K as {g(s) = Yozrcry ﬁ We in fact have a similar
factorization as before, namely

-1
wo= 1 (=) - (19

PCRk prime

Similarly, we can write
lk(s) = c—Kl + (analytic function). (15)
S —

for some constant ck. It turns out that cx contains lots of information about K.

2 Sept. 9, 2016

We'll first finish going over the introduction. Last time we talked about factorization, but there’s also
localization. This is akin to reduction mod p or mod m.
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2.1 Localization

4 )

Example 2.1

Let’s try to solve x* +y® = 7z for integers x, y, z not all 0. We can also assume that ged(x, y,z) = 1
because of the 7. (write out later).

If there is a solution, then x + y? = 0 (mod 7), which implies —1 is a square mod 7. But this
is not true, so there are no other solutions. More generally, we can reduce equations mod pz, p3,
and so on, which motivates looking for p-adic solutions in Z,,.

|\ J

To find solutions in the integers, one strategy is to look for solutions in Z,, for all p, and then fit
to a solution in Z. This works if there is no solution for some prime p, because then the equation does
not have any solutions, but can fail otherwise.

Theorem 2.2 (Legendre)

Let a,b,c € Z be nonzero. Then ax? + by® + cz®> = 0 has a (nontrivial) solution in Z iff it has a
solution mod m for all m and a solution in R.

It actually turns out that you can show there is a solution to the above equation if m is relatively
prime to a, b, c. Thus you only need to check a finite number of m, not infinitely many. However, as
the following example shows, this example of the local-global principle fails for cubics.

Example 2.3 (Selmer)

3x> + 4x> + 5x3 = 0 has a solution mod m for all m, and solutions in R, but no solution in Z.

2.2 Algebraic Integers

Recall the definition of an algebraic number.

s A

Definition 2.4

a € Cis an algebraic number if any of the following hold:
« « is the root of some non-zero f(x) € Q[x].
« Qa) = Q[a].

+ Q[a] is a finite-dimensional Q-vector space.

All of the above characterizations are equivalent.

|\ J

The bottom characterization is the most useful because it reduces the problem to one in linear
algebra.

Definition 2.5

a € Cis an algebraic integer if any of the following hold: « is the root of some non-zero monic

f(x) € Z[x],
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We want to prove characterizations of algebraic integers that are similar to our ones for algebraic
numbers.

4 )

Theorem 2.6

The following are equivalent:
(a) «a is an algebraic integer.

(b) The minimal polynomial of @ in Z[x] is monic. (This is not the same as our definition since
our definition only requires some polynomial to be monic, not the minimal one).

(c) Z[«a] is a finite Z-module (that is, it has a finite generating set).

(d) There is a finite Z-module M c C satisfying aM C M.

|\ J

Proof. First we show that a implies b. Let f € Z[x] be a monic polynomial with f(a) = 0. Let
g(x) € Z[x] be the minimal polynomial of «, with the coefficients of g relatively prime. By definition,
g(x) | f(x)in Q[x] (since Q[x] is a PID, we can do the division algorithm). Thus,

fx) = g(x) - h(x). (16)

We know that f(x) € Z[x] and is monic; g(x) € Z[x]; and h(x) € Q[x]. We want to use that the
coeflicients of g are relatively prime, which motivates the following definition.

Definition 2.7
If f € Z[x] is nonzero, then content(f) is the ged of the coefficients of f.

We also have Gauss’ Lemma, which is proved in the homework.

Lemma 2.8 (Gauss’ Lemma)

Content is multiplicative. That is, for f,g € Z[x],

content(fg) = content(f) content(g) (17)

We want to use Gauss’ lemma somehow. So choose d such that d - h(x) = H(x) for H € Z[x].
Multiplying 16 by d on both sides and plugging in, we get
d- f(x) = g(x) - H(x). (18)

Since f(x) is monic, content(f) = 1. Thus content(d - f) = d. For the RHS, by Gauss’ lemma we
have
content(gH) = content(g) content(H) = content(H), (19)

since content(g) = 1. Thus, content(H) = d, so this implies

é  H(x) = h(x) € Z[x]. (20)
Thus, f(x) = g(x) - h(x) with f, g, h € Z[x]. This tells us that
XM= (ax" + . )b+ ) (21)
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since f is monic. Equating coefficients, we get 1 = ab for intgers a, b. Thus, a = 1 (or a = —1, but then
we can just multiply g by —1), so g is monic.

Next we show b implies c. Let g(x) be the minimal polynomial of @ in Z[x], and set d = deg g(x).
Let § € Z[a]. We claim
B=bo+ba+... +bya®? (22)

for some b; € Z.
To prove this, we can write f§ = f(a) for some f(x) € Z[x]. By the division algorithm, we have

fx) = g(x)q(x) + r(x) (23)

with some q,r € Z[x] with degr < degg = d. Note that g, r have integer coeflicients because g is
monic; think long division.
Plugging in « into the above equation yields

fla) = g(a)q(a) + r(a) = f = r(a) (24)

since g(a) = 0. Thus f is the root of a polynomial with degree less than deg g = d, so we are done.
To show c implies d, take M = Z[«].
Finally, we show d implies a. Let my, ..., mg € M be generators. By assumption, amy, ..., amg € M.

Since the m; are generators, we have
d

am; = Zaijmj (25)

j-1
for some a;; € Z. (Note that a;; depends on « as well, although we suppress this from the notation for
convenience). Writing this in matrix form, we have

mi appr - g\ (M

mgq Aq1 - Qqd/ \mq

Let A be the d X d matrix on the RHS. Rearranging the above equation yields

my
(aI =A)| : [=0. (27)
ma
my
Since| : |isnot the zero vector, det(al — A) = 0. Note that det(x] — A) is a monic polynomial with
mq
coeflicients in Z. Since this polynomial has « as a root, it follows that « is an algebraic integer. O

We can now show the following important result.

Corollary 2.9
Let a, f € Z, where Z is the algebraic integers. Then a + 8, aff € Z.
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Proof. Let M = Z[«a, B]. We claim that M is finitely generated. To prove this, we note that by the above
theorem, Z[«a] and Z[f] are finitely generated. So we can write
Zla|=Z+ -+ Za®! (28)
ZIBl=Z+ -+ Za® . (29)

It’s not hard to check that M is generated by the a’f#/, for 0 < i < d and 0 < j < e. Furthermore, we
have

(@ + p)Z[a, f] € Z|a, B (30)
afZla,p] C Z|a, B]. (31)
Thus by the lemma, o + § and a8 are algebraic integers. O

The next corollary is proved in the exact same way, so we omit its proof.

Corollary 2.10

Let K be a number field. Let R = {& € K : « is integral over Z} be the ring of integers. Then Rk
is a ring.

3 Sept. 12,2016

3.1 Integrality

More generally, we can define integrality for any two rings.

Definition 3.1
Let A C B be rings. Then § € B is integral over A if § is a root of a monic (nonzero) f(x) € A[x].

Essentially the same proof as before will show that the above definition is equivalent to:
« A[f] is a finitely generated A-module.

« There is a finitely generated A-module M C B with fM c M.

Definition 3.2
The integral closure of Ain Bis {f € B : f§ is integral over A}.

There isn’t really any good notation for the integral closure. Using the same proof as last time, we
have the following theorem.

Theorem 3.3

The integral closure of A in B is a ring.

This motivates the following definition.
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Definition 3.4
Ais integrally closed in B if the integral closure of A in B is itself A.

One special case is when A is an integral domain and B is its fraction field. If A is integrally closed
in B, we say A is integrally closed.

4 )

Example 3.5

a

Z is integrally closed. To see why, let f € Q be integal over Z. Write § = { with a,b €
Z,gcd(a, b) = 1. By definition, there exists a monic polynomial

d-1

f(x):xd+clx +...+cq € Z[x] (32)

such that f(f) = 0. Plugging in f and clearing denominators yields

a +c1a% b+ .. +cggab®l 4 cgb? = 0. (33)

Since every term except the first has a factor of b, it follows that b | a%. Combining this with
the assumption that ged(a, b) = 1 implies that b = +1, s0 f§ € Z.

Example 3.6

Z[V5] is not integrally closed. Let f = 1+2\E € Q(v/5). It’s not hard to see that f8 is a root of

x? — x — 1, so it is integral over Z [\/5], but S is clearly not in Z[\/E] In fact, the integral closure
of Z[V5] in Q[V5] is Z[ 5],

Proposition 3.7

Let A ¢ B C C berings. If B is integral over A, and C is integral over B, then C is integral over A.

|\ J

Proof. Let a € C. By definition, there exist b; € B such that
a" + bt + ...+ b, = 0. (34)

Each b; is integral over A, so B’ := A[by, ..., b,] is a finitely generated A-module. From the above
polynomial, « is integral over B’, so B’[«] is a finitely generated B’-module. Since B’ is a finitely
generated A-module, it follows that B’[«] is a finitely generated A-module. Finally, since

aB’[a] c B'[«a], (35)

it follows that « is integral over C. O

Proposition 3.8
Say B/A integral, and A, B are domains. Then B is a field iff A is a field.

10
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Proof. First, assume B is a field. Let & € A be nonzero. Let § € B satisfy aff = 1. Then, by definition
we have
Bl+alpl+ . +ag=0 (36)

for a; € A. Multiplying by a?!

and using that aff = 1:
ﬁ+a1+aza+...+ad0{d—1=0. (37)

ap + aza + ...+ aga®! € A, so it follows that § € A.
Next, assume A is a field. Let f € B be nonzero. Again, we have

Bl+aifl+ . +ag=0 (38)
for a; € A. We can assume WLOG that a4 # 0, since if a; = 0, then our polynomial would look like

B-(B N+ . +agq)=0. (39)

Using that B is a domain and 8 # 0, we get 4~ + ... + a4_; = 0, and we can repeat this argument until
the constant term is non-zero.

Now in equation 38, moving a, to the RHS and dividing by a4 (which we can do since A is a field),
we get

(40)

5 B+ ai i+ taga) .
_ad - :

Thus f has an inverse, so B is a field. O

3.2 Quadratic Fields

Consider fields K/Q, with [K : Q] = 2. Then we can write K = Q(Vd), with d € Z. Furthermore, we
can assume d is square-free; that is, we can write d = +p; . .. p, for some distinct primes p,. We say K
isreal if d > 0, and K is imaginary if d < 0.

It turns out that, for different primes p;, the above quadratic fields K are not isomorphic. For
example, Q(V?2) is not isomorphic to @(v/3). This may seem obvious, but consider the fields [Fp(\/i)
and [Fp(\/g). If 2,3 are QNRs mod p, then these fields are isomorphic!

K/Q is Galois if Gal(K/Q) = {1, 6}, where o(a + bVd) = a — bVd.

Proposition 3.9

a € Rg = o(a) € Rg.

Proof. Apply o to a? + aja®™! + ...+ ay = 0, where a; € Z, using that ¢ is a field isomorphism that

fixes Q and therefore Z. m|

If « € Rx and @ € Q, then @ € Z. This is something we proved earlier. But more interestingly,
suppose a ¢ Z, with @ = a + b¥d for some a,b € Q. When is « € Rg?

By the claim, @, o(a) € Rk. Thus, @ + o(a) € Rg and @ - o() € Rk. Both of these quantities are
fixed by o, so they are in Q as well. Thus, @ + o(@), a - 6(a) € Rk N Q, so by a previous result, they are
in Z. Writing it out, we have

a+o(a)=2a€cZ, (41)
a-o(a)=a*—db* e Z. (42)

The first condition is especially useful, as either a is an integer or % plus an integer. We look at
each case separately.

11
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Case 1. Assume a € Z. Then, b?*d € Z. Since d is squarefree, we must have b € Z (as if b = J%, then
this implies f2 | d).

Case 2. Write a = % + A for some A € Z. Then, using the second condition:
1 : 2 1 2 _ 2
(544) ~drez = +a+a-pdez
= 411 ~bdeZ (43)
= b%d = i+BforsomeB eZ

Now, the above equation implies that b = % + B’ for some B’ € Z. This is a necessary condition,
but it might not be sufficient. So, plugging this back in to equation 43, we get:

1 1 d-1
(Z+B'+B'2)-d:Z+B:>B—B’d—B'2d:T (44)

Since the LHS is an integer, we must have d = 1 (mod 4).

Putting both cases together gives us the following theorem.

Theorem 3.10
X _[zIVd]  d=23 (mod 4),
VD T\ Z[Y] G =1 (mod 4).

3.3 Cyclotomic Fields

Another example to keep in mind is the cyclotomic fields, K = Q({), where { is a primitive nth root
of unity. Consider the homomorphism from Gal(K/Q) — (Z/nZ)* defined by o +— a(o), where
o(Z) = £%9). This map turns out to be an isomorphism. We will later prove this when n is prime, but
we might not get to the general proof.

More relevant to our studies is the following theorem. Maybe we’ll prove this later?

Theorem 3.11
Ra() = Z[{].

Note that G(Q({)/Q) is really nice since it is abelian. The following theorem (which is really hard
so we won’t prove it) says that, in some way, these are all the Galois extensions of Q with an abelian
Galois group.

Theorem 3.12 (Kronecker-Weber)

Let K/Q be Galois with G(K/Q) abelian. Then there exists n such that K ¢ Q({,), where ¢, is a
primitive nth root of unity.

In the above theorem, if you replace Q with Q(Vd) and d < 0, then there’s an analogue of this
theorem. There’s no analogue so far if d > 0 though.

12
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4 Sept. 14, 2016

Today we’ll talk about three useful tools for studying number fields.

4.1 Norms and Traces

Let L/K be a finite extension of fields. One way to study this extension is to consider L as a finite-
dimensional vector space over K and see what multiplication in L does in this viewpoint. For any
B € L, define Mg : L — L by Mg(«) = Ba. This is a K-linear transformation of L.

Definition 4.1

The norm of f, denoted N,k f3, is det(Mp). The trace of §, denoted Ty, f, is Tr(Mg). We some-
times omit the subscript L/K when it is not needed.

Consider the polynomial det(xI — Mg). We have
det(xI — Mg) = xFKI —(Ty ) p)xtEKI 4+ (N B). (45)

This gives another way to define the norm and the trace. Note that the norm and trace are independent
of the choice of basis of L over K.
Here are some facts about norms and traces.

1. T(B1 + B2) = T(B1) + T(P), since the trace of a matrix is additive;
2. T(ap) =a-T(P) foralla € K;
3. N(p152) = (NB1)(Nps), since the determinant of a matrix is additive.

Note that T : L — K, since the elements of Mg are in K. Thus, the first and second facts tell us that
T is a K-linear map.

( )

Proposition 4.2

Suppose f is algebraic and separable over K (that is, K(f)/K is a finite extension, and the minimal
polynomial of f has distinct roots). Let f1, ..., fa be the roots of the minimal polynomial of f over
K. [Equivalently, these are the images of f for all possible embeddings o; : K(f) — K.] Then,

T(P)=Pr+ ...+ Pa (46)
N(p) = pi ... Pa. (47)

|\ J

Proof. Since the minimal polynomial has d roots, K(B)/K is degree d. Thus 1, 3, ..., 4! is a K-basis
for L := K(f). Let x¢ — a;x%™! — ... — ag = 0 be the minimal polynomial of § over K.
Now consider the map Mg : L — L, which sends a — pa. We have

Mgl =p (48)
Mgf = p° (49)

: (50)
MpB¥t = a7 + .+ ag. (51)

13
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Thus, the matrix of Mg looks like

0 aq
1 0 aqd-1
1 . : (52)
0 a
1 ai

Looking at the matrix, we see that T(f) = a; and N(f) = +ay. To evaluate these in terms of the f;,
note that

x?—ax = —ag = (x = Br) - (x = fa) (53)
From Viete’s formulas, we thus have that a; = f; + - + B, and ag = £f; - - - B,,. Equating these with
the norm and trace gives us the desired result. O

Now we proved our formulas for K(f)/K. But what if we have an extension L on top of K(f)? Then
we have

Tr/x(B) = [L : K(B)] - Tk(p)/x(B) (54)
Niix(B) = (Nipyk (B)HEPL. (55)

The proof of the above two formulas is easy, but if you’ve never seen it before you should work it
out.

Proposition 4.3

Let A be an integral domain, K its fraction field. Suppose we have an extension L/K, with € L
and f integral over A. Then N(f), T(f), both of which are in K| are integral over A. If Ais integrally
closed, this implies that N(), T(f) € A.

Proof. Let fi, ..., Ba be the roots of Fg(x), the minimal monic polynomial of § over K. We showed that
Fg(x) € Alx]. Thus, fi, ..., Bq are integral over A, since they are the roots of a monic polynomial in
Alx], so it follows that their sum and product are integral over A as well. O

4 )

Example 4.4

Let K = Q,L = Q(\/E),ﬂ —a+bVd € L. To compute Mg, choose 1, Vd as a basis for L over K.
Then:

Mg(1) = a+bVd (56)
Mp(Vd) = bd + aVd. (57)
Thus, the matrix of My is
a bd
o ). -

Then, T = 2a and Nf = a? — db®. Furthermore, note that there are two embeddings of
L = Q(Vd) into Q: one that sends Vd to itself, and one that sends Vd to —Vd. Then the trace is
the some of f’s conjugates, a + bVd and a — bVd, and the norm is the product of the conjugates.

14
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Example 4.5
Let K = Q,L = Q({,), where , is a primitive mth root of unity. Then

m-—1

Npk(lm) = k. (59)
k=1,(k,m)=1

This product looks hard, but note that k is relatively prime to m iff m — k is relatively prime to

m. If m is odd, then every term cancels and the norm is 1. If m is even and m/2 is relatively prime

to m, then the k = m/2 term does not get cancelled, and you end up with {7/% = —1.

4.2 Discriminants

Let B/A be an extension of rings. Assume B is a free, finitely-generated A-module. (Here, free means
that B has a basis over A).

Example 4.6

Consider K/Q. Then the ring of integers, Rk, is a finitely generated Z-module. Because Rk has
no torsion (it can’t be killed by any z € Z since 1 € Rg), by the fundamental theorem of finitely
generated abelian groups, Rx is a free module.

Definition 4.7
Let Sy, ..., Bn € B. The discriminant of fi, ..., §,, over A s

Dpya(P1, ..., Bn) = det (T, a(Bif))) (60)

where T, (i f;) is (bad notation for) a matrix whose i, j-th entry is Tg; (B ;).

This looks really weird, but here’s some motivation. We have a map

BxXB— A (61)
(B, B') = Tpra(BB). (62)

This map is A-bilinear, so we see that the discriminant is a way of studying this bilinear map. In
fact,if B = R and A = Z, we’ll see that the above bilinear map is positive-definite and non-degenerate.
This then lets you use geometry to study A and B; we can define an inner product (v, w) using this

map, then the norm ||v|| = /(v, v), etc. In this setting, the determinant is the (signed) volume of the
parallelpiped spanned by the basis elements.

4.3 Change of Variables

15



5 Sept. 16, 2016 Math 2530: Number Theory Uthsav Chitra

s N

Proposition 4.8

Suppose S, ..., fn € Band y1, ..., yn € B. Suppose

n

Yi = Z aijp; (63)
=1
for some a;; € A. Then,
D(y) = (det(a;;))*D(B). (64)

Proof. We have

T(yiyj) =T (Z aix Pk Z ajlﬁz)

k l

= > aT(BeBaji
k.1

(65)

by the linearity of the trace map. Note the above formula’s similarity to matrix multiplication. In terms
of matrices (and really bad notation), we can write this as:

(T(ivy)) = (i) - (T(Bify) - (aij)" (66)

Taking the determinant of both sides, we get
D(y) = (det(ai;)) - D(B) - (det(a;;))" = (det(ay;))* - D(), (67)
as desired. O

5 Sept. 16,2016

5.1 Discriminant Review

Last time we defined the norm, trace, and discriminant. Say B/A is an extension of rings, B free and
finitely-generated. Let S, ..., B, € B. Then

Dpya(P1, ..., Bn) = det(T(BiB;)). (68)

We also have the following corollary to our change of basis theorem.

4 )

Corollary 5.1
Suppose fi, ..., B, is a basis for B/A, and ], ..., B, is another basis for B/A. Then,

D(p) = u’D(f’) (69)
for some unit u € A*.
Proof. By definition, we can write
Bi= aib (70)
Bi= Y ap (71)

16
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Then, f’ = MB, and f = M’p’. Tt follows that MM’ = I, so det(M) is a unit. By last time,

D(B’) = (det(M))* - D(B) (72)
so the result follows. m]

Definition 5.2

Assume B is a free A-module. Then the discriminant of B/A is the ideal

©Bja = (Dpja(Pis .., Br)) == Dpra(Pr, ... fu) - A (73)

for any basis f, ..., Bn.

5.2 Bases and Discriminants

Our definition is well-defined because of the corollary. For the following result, we note that we don’t
necessarily know that Dp,4 # 0. We will get back to show that later.

Proposition 5.3

Assume D4 # 0. Let y1, ...,y € B. Then y1, ..., ¥, is a basis iff D(yy, ..., yn) - A = Dp/a.

Proof. The right direction is already complete from the previous claim.
For the left direction, suppose D(y1,...,yn) - A = Dpya. Let f1, ..., B, be a basis for B/A. Then, by
definition,
Dysa = D(B) - A. (74)

Since the f; are a basis, we can write

vi = ), @iy = D(y) = (det(a;j))’ D(B). (75)

J

for some a;; € A.
Looking at the ideals generated by the LHS and RHS, we have

D(y) - A = (det(a;)))’D() - A. (76)
Now, D(y) - A = Dp;a by assumption, and D(f) - A = Dp4 since f is a basis. Thus, if we add the
additional assumption that A is a domain, this implies det(a;;) € A*. (need to look at later. why
does a = r?a imply that r is a unit?). Furthermore, using that
(a;;)"" = (adjoint of a;;) - (det(a;;)) ™", (77)
we see that (a;;)”! has entries in A. Thus, we can write

Bi= Y ajyi (78)

for entries a;j in (a;;)7", and tt follows that y is a basis. O
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Example 5.4

Letd =1 (mod 4),K = Q(Vd),Rx = Z[Hz\/g]. Then 1, 1+2‘/E is a basis for Rg/Z, so we have

T(1) T(1+VE) 2 1

Thus, the determinant is the ideal generated by d in Z.
Now suppose we thought that 1, Vd was a basis. Then, we can compute the discriminant as

_ T(1) TN\ _ 2 0)) _
D(l,\/a)—det((T(\/a) W) ))—det((o zd))—4d. (80)

Since (4d)Z # dZ, it follows that 1, Vd is not a basis.

The following theorem talks about when the discriminant is zero and nonzero.

Theorem 5.5

Let L/K be a field extension with n = [L : K]. Assume L/K is separable. (One definition of
separable is that there are n embeddings of L into K). Let oy,...,0, : L < K be the distinct
embeddings. Let f1, ..., fn € L. Then,

(@) D(B1, ... Bn) = det(ai()))?,
(b) Pi, ..., Bn is a basis for L/K iff D(f, ..., Bn) # 0.

|\ J

Proof. For the first part, D(fs, ..., fn) = det(T(B;B;)) by definition. Then

D(py, ..., Bn) = det(T(BiB;))

= det(z or(Bip;)), by definition of trace,
k=1

- det(Z ok (Bi)ok(B;))

k=1
= det((ox(Bi))i,k X (0k(Bj))k,j)» which... might be a bit off.

(81)

Now the above matrices are transposes, and the determinant of the product is the product of the de-
terminants. Thus the above determinant is equal to

(det(ai(B))))*. (82)
m}

We won’t prove part b now, but we’ll prove something we use to prove b.
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Theorem 5.6 (Independence of Characters)

Let G be a group, let K be a field, and let yi,..., y» : G — K" be distinct characters (i.e. group
homomorphisms). (Note that, given any set X and maps X — K, the maps form a vector space
over K, since you can add functions and multiply them by scalars in K). Then, i, ..., yn are K-
linearly independent.

|\ J

This theorem is pretty odd, since if y; were normal functions, this would definitely not be true.
Somehow being group homomorphisms, which is multiplicative, gives them some additive property.

Proof. Suppose the theorem is false, and y1, ..., y, are linearly dependent. Taking a subset, can assume
nis minimal. (Note that we clearly do not need to consider n = 1). Since the y; are linearly independent,
we can find ¢, ..., ¢, € K with

cix1+ ... +cnyn =0. (83)

Note that the c; are non-zero, as otherwise this would imply 7 is not minimal. So for all g € G,

c1y1(g) + cax2(g) + -+ + cnyn(g) = 0. (84)

Let h € G. Then,
c1x1(gh) + cax2(gh) + -+ + cu xn(gh) = 0. (85)

Since y; is a group homomorphism, this implies

ciyxi(@xi(h) + -+ cuxn(g) xn(h) = 0. (86)

If we do equations 86 - y;(h) - (equation 84), we end up with

n

D eixi(@) - Q) = xa(h) = o. (87)

i=2
Note that the i = 1 term drops out. But now, we can write

n

D eilth) = xa(h)yi = 0 (88)

i=2

as a linear combination of the functions y;. If y;(h) — y1(h) # 0 for any i, then we reached a contradic-
tion, since we assumed n is minimal (and therefore that ys, ..., y, are linearly independent). Thus, we
must have y;(h) = y1(h) for all i = 1, ..., n. But now we note that our choice of h was arbitrary. Thus,
xi = x1 for all i. But since our characters are distinct, this is not possible. O

On Monday, we will finish the proof of part b.

6 Sept. 19,2016

6.1 Discriminants

We recall the theorem we were trying to prove last time.
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Theorem 6.1
Say L/K is separable, o7, ..., 0 : L = K are the distinct embeddings. Let f, ..., B, € L. Then

(@) D(B1, ... Bn) = (det(a:(5)))).
(b) D(B1, ..., Bn) # 0 © Py, ..., Bn is a basis for L/K.

. J/

Proof. We prove b now. Assume fi,..., f, is a basis. Suppose for the sake of contradiction that

D(fi, ..., fn) = 0. By part a
det(cri(ﬁj)) =0. (89)

Then, the columns are linearly dependent, so there exist ay, ..., a, € K with

> aioi(f) =0 (90)

i=1

for all j. Now let f be an arbitrary element of L. Then we can write
p= Z ck P (91)
k

We have

Z a;ioi(f) = Z aio; (Z Ckﬁk)

i k

i i

= > > aickoi(Be)
ik

= > aickoi(Br)
kK i

= (Z aiol-<ﬁk>)
k i

= Z ¢k - 0, by equation 90
k

(92)

=0.
Thus, }};a;0; : L — K is the 0 function. Now, we note that if we restrict the o; to L*, then we have
i L' > K (93)

so the o; are characters. Furthermore, they are distinct since each o; was a distinct embedding. Thus,
by independence of characters, we have a contradiction.
The other direction of b is simpler, so we can work this out on our own. O
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Proposition 6.2
Let L/K separable,n = [L: K], and § € L. Let

Fg(x) = x" + ax™ '+ +a, € K[x] (94)
be the minimal polynomial of § over K. (So L = K(f)). Then
D(1, B, ...s f*71) = (1) MEN e (F(B)). (95)

(We'll figure out the exponent of (—1) in the proof).

|\ J

Proof. Write Fg(x) = [];(x — f3;), for some f; € K. Then
D(1, B, ... B*1) = (det(oi(B))* = (det(B)))*. (96)

The RHS looks like a Vandermonde matrix!

) = ﬁf /3:2 ﬁ:‘z : (97)
11.—1 Zn'-l o g

Thus, we have

DL B, ") = | |(Bi - )
i<j

o (98)

— (_1)number of i,j with i<j l—l(ﬁ’ _ ﬁj)

i#]
We can compute the exponent of (—1) as (g) Expanding the rest of the RHS above, we get

n n

[1e-8r=]1]|] -8

i%j i=1 | j=1
7 T\ (99)

=ﬁ%%>
i=1

To see how we went from the top equation to the bottom one, note that
n
Fpx) = | |G = B, (100)
k=1

which implies
n n

Fp= > [ -8 (101)

I=1 k=1,k#l
Plugging in x = f3;, every addend in the above sum with a x — f; term will go to 0. There is only one
addend without such a term, namely when [ = i. Thus,

n

Fpp) =[] 8- 80 (102)

k=1,k+i
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Now going back to equation 99, we have

ﬂ%—m=ﬁ%%>

i)
= | | FpteiBy (103)
o )
= N(E4(p))

as desired. O

Example 6.3

p is aroot of x™ + a, where a € K and x" + a is irreducible in K[x]. Now,

D(1, B, .., ") = (=)&) Nk (nf™ ™)

) (104)
— (_1)somethmgnn (NK(ﬁ)/K(ﬂ))n_l ]

Using Viete’s formulas, N(f) = (—1)%°methingelse . 3 Thys, the discriminant is n"a™! with some
(—1) factor in the beginning.

Example 6.4

Let 8 be a root of x> + ax + b. Then D(1, B, f%) = 4a> + 27b. Probably with a (—1) factor in the
beginning.

6.2 Cyclotomic Fields

Let p be prime. We want to compute the ring of integers of Q({), where { = {,, = e?"i/P The answer
ends up being Rgs = Z[{].
Our first task is to find the minimal polynomial of { in Q. Let f(x) = xP~! + xP72 ... + 1.

Proposition 6.5

f is irreducible.

Proof. Consider f(x + 1). We have

-1
(x+1)P -1 K P\ x 1 _ p
+1)="—""+- = =xPVpxPE 4 kpoigp. 105
fe+1) (x+1)-1 kzz;)k+1x x px kx P (105)
By Eisenstein’s, f(x + 1) is irreducible. Additionally, we note that if p were composite, this proof could
fail because one of the binomial coefficients may not be divisible by a prime that divides the constant

term (say if p = p1ps). O

22



7 Sept. 21, 2016 Math 2530: Number Theory Uthsav Chitra

Also, Q({) is Galois because it is the splitting field of f(x). So we have
Gal(@()/Q) = {0 : or(§) = I for 1 <k <p-1}. (106)

Now let’s compute the trace and norm of ¢. (We omit the subscripts, but it’s clear that T = Tg()/a
and likewise for the norm). We have

T({) = T({’) = -1, by Viete’s (107)
T(1)=p—-1, since 1+ +---+ P71 =0. (108)

By linearity of the trace, we have

TA-)=T)-T)=p-D-(-D=p (109)
N{{-1)= (=1)"2" . constant term of the min poly of ({ = 1) = (=1)?"p, (110)

since the minimal polynomial of { — 1 is f(x + 1). Since p is odd, N(1 — {) = p as well, because
N(-1) = (=171 =1.

7 Sept. 21, 2016

7.1 Cyclotomic Fields, continued

Recall that our goal is to show that Rg(y) = Z[{]. (We write R = Rgs) for ease). We computed

T({/)=-1for <j<p-1 (111)
T(1)=p-1 (112)
T1-{)=pfor1<j<p-1 (113)
N1 -{)=p. (114)
Using the last line and the fact that the norm is the product of conjugates gives
p-1
p=Na-0=[]a-0) (115)
j=1
Step 1: Compute (1 — {)RN Z. We have 1 — ¢/ € Z[{] C Rfor j > 1. Thus,
p-1
p=|]a-Hea-0r (116)
j=1

Thus, p € (1 — {)R N Z. Since this is an ideal in Z, we must have that it equals either pZ or Z. We
want to show that it equals pZ, so assume for the sake of contradiction that

(1-0ORNZ=2Z. (117)

This implies that 1 € (1 — {)R, which further implies 1 — { € R*. Similarly, all the conjugates of
1 — { are units, since we can apply some o € Gal(Q({)/Q). Thus,

1—JeR (118)

forj=1,...,p—-1
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p-1
But now we use that p = 1_[(1 — 7). Since p is the product of units, we must have p € R*. Thus
j=1
p-u =1for some u € R. But this implies that u = 1, so u € Q and u is integral over Z. But this is not
possible, so we have a contradiction. Thus, (1 - {)RN Z = pZ.
(We won’t prove this, but if we try to go the other way— pushing pZ up to R instead of going down
from an ideal of R— then we’ll see that pR = (1 — )P~ 'R).
Step 2: Let f € R. We want to show that § € Z[{]. We know that f € Q[(], so we can write

ﬁ:b0+b1§+"'+bp_2§p_2 (119)

for some b; € Q. We want to show that b; € Z.
The trick here is to look at Tg,z((1 — {')B). Since this is the trace of R down to Z, this element is in
Z. We can write

p—2
T(1-0p) = D (1= (120)
j=0

where f; are the conjugates of . Now, ; € R, and 1 — {7 € (1 — {)R. Thus, the above expression is in
(1-{)RN Z. Therefore

T(1-0p) e pZ. (121)
We have

p-2
I((1-0p) = T((l -0 b,{f)
j=0

(122)

p-2
Db - TE)
j=0
= pbo

This is because T({’) = —1if p ¢ jand T({/) = p — 1 if p | j. Since T((1 — {)B) € pZ, this implies
b() e”Z.
To show that the other coefficients are integers, we can replace  with

(B=00){ " = by + byl + -+ by (P (123)

and repeat the same argument to show b; € Z. Repeating this argument again shows that b, b3, ..., b, €
Z, as desired.

7.2 Facts about Ry

4 )

Proposition 7.1
Consider K/Q with n = [K : Q]. Then Ry is a free Z-module of rank n. That is,

Rx = 7" (124)

as Z-modules.
. J
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Proof. Rk is a finitely-generated free Z-module. Thus, by the fundamental theorem of finitely gener-
ated abelian groups
Rx = (finite group) X Z". (125)

However, there can be nothing in the finite group, as otherwise it would have to be killed off by
some z € Z. Thus, the question now is what is r.

Certainly r < n due to some argument about vector spaces I missed (this link is a good explanation
for why Ry is finitely generated). For the other direction, let f1, ..., f, € K be generators for K over Q.
By a homework problem, there exists d € R, d # 0 such that

dpi,....dpn € Rx. (126)
If r < n, then
n
Z(cid)ﬁi =0 (127)
i=1
with ¢; € Rg. Since the f; are K-linearly independent, ¢;d = 0 = ¢; = 0. O

Proposition 7.2
Let K/Q. Then R is integrally closed.

Proof. Let § € K be integral over Rx. We want to show that f € K is integral over Rg. We have the
following tower.

Rk[f]

Rk

Z.

Rk[f] is integral over R by definition. Also, Rk is integral over Z, again by definition. Thus Rg|[f]
is integral over Z, so f is integral over Z. But by definition, Rx is the set of elements in K that are
integral over Z. Thus, ff € Rk. O

Goal: Given K/Q, we want to describe the ideals in Rg. For example, if K = Q, we would want to
describe all the ideals in Z. Let a € R be an ideal. Assume a # 0. Here are some facts:

1. anZ # 0. This is a HW problem.
2. ais a finitely-generated, free Z-module, since it is a Z-submodule of Rg.

3. Rg/a is finite.

Proof. Let 0 # d € a N Z, by property 1. Then,
dRg C q, (128)

so Rx/dRx D Rk /a. As a Z-module, we have
Ri/dRg = 7" |d7" = (Z/dZ)". (129)

Thus, Rx/dRk is finite, so Rx /a is as well. ]
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e

Definition 7.3

The norm of a, where a # (0), is

Na = Nk/ga = #(Rk/a). (130)

By convention, set N(0) = 0.

|\ J

Suppose a = aRk. Then Nk a(a) = [],.x 5 o(a). This does not look very similar to our definition
above, but later we will show that

|Nk/qa| = N(a). (131)
Continuining on with our facts:
4. Letp C Rk be a (non-zero) prime ideal. Then
(a) p is maximal,

(b) pNZ = pZ for some prime p € pZ.

Proof. Note that Rk /p is finite and an integral domain, since p is prime. These two facts imply that
R /v is a field, so p is maximal. m]

Hinting at the connection between Rx and Dedekind domains, we see that
Ry is integrally closed.

+ Every non-zero prime ideal is maximal.

e Ry is Noetherian.

Okay, we didn’t actually prove the last one. So let’s do that.

Proof. If a C b, then R/a onto, R/b, so that #(R/a) > #(R/b) and Na > Nf. Further, if our inclusion is
strict, then Na > Np.

So suppose a; C ap C --- is an infinite strictly increasing chain. Then Na; > Na; > Naz > ---.
But norms are positive integers, so well-ordering principle. BAM. O

8 Sept. 23,2016

I ended up writing these notes in my notebook. I'll copy them over at some point. We proved things
about Dedekind domains, and are very close to unique factorization of ideals.

9 Sept. 26,2016

9.1 Unique Factorization of Ideals

Recall that if a C K is a fractional ideal (an R-submodule of K), then
al:={f€K:pacR} (132)

Last time, we proved the following:
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Proposition 9.1

If p is prime, then pp~! = R.

This is the key for the big theorem about Dedekind domains.

Theorem 9.2

If a C R is a nonzero proper ideal, then you can uniquely write a as a product of prime ideals.

Note that, if R is a PID, then this is not too hard to show (very similar to Z).

Proof. First we show existence. We use an argument very common when talking about Noetherian
rings. Let
S = {a C R: ais not a product of primes}. (133)

If S = @, we are done. Otherwise, since R is Noetherian, S has a maximal element, say b. By Zorn’s
lemma, let p be a maximal ideal with b C p. If b = p, we have a contradiction. Multiplying by p~! on
both sides gives us

bcp=bp ' Cpp ! =R (134)

We also know that R ¢ p~!. This implies that b ¢ p~!b, so
bcp'bCR, (135)

Thus, since b is a maximal element of S, and p~1b is a proper ideal, we can write pbasa product
of primes:
p'b=pipy P (136)

Multiplying by p on both sides gives
b=pp;---Pn. (137)

Thus, b is a product of ideals, which is a contradiction.
Next, we show uniqueness. Suppose it’s false, and write

PrLoc P =Qrc s (138)
for unequal prime ideals, with r minimal. From this, we get

P lare 0. (139)

Since p; is prime, p; | q; after relabeling, or q; C p;. Since these are both proper maximal ideals,
g1 = P1, SO we can write
P1-Pr=P102--Qs. (140)

Multiplying both sides by p;! and using that p;p;" = R gives us
P2 Py =00 Qs (141)

This is another counterexample, but we chose r to be minimal, which is a contradiction. O
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9.2 Application to Riemann-Zeta Functions

Recall the Riemann-Zeta function
) -1
1 1
gv(s):Z;:l_l(l—j;) : (142)
n=1 P
The RHS is essentially unique factorization. We can also define the Riemann-Zeta function for a

number field K/Q. .
lk(s)= ). (143)

0#aCR (Na)s

where Na = #(R/a). It turns out we can write

1 1\
{k(s) = Z Noy :U(l‘ (Na)s) : (144)

0#aCR

This uses unique factorization of ideals, plus the fact that N(ab) = Na - Nb.

9.3 Chinese Remainder Theorem

Let R be a ring, and let ay, ..., a, be ideals. Assume that for all i # j, a; + a; = R. We say that a; and q;
are relatively prime if this holds. We can map

R — R/a; X Rag X --- X R/a, (145)

in the obvious way.

Theorem 9.3 (Chinese Remainder Theorem)

This is an onto map, and its kernel is N}, a;.

Proof. The idea of this proof is that, if we can show that (1,0, ...,0), (0, 1, ..., 0), etc. are in the image of
this map, then we can take a linear combination to get anything in the range.
We have

1€R=(a; +az)(a; +asz)---(a; +ap)
(146)
C a; + (azas---ap)

Thus, we can write 1 = a; + 1, where @; € a; and ff; € a; - - - a,. Now what is the image of f;?

Since By isina;, f; +a; = 0fori > 2. Fori =1, f; + a; = 1. Thus,

B - (1,0,...,0). (147)
Repeating this fori = 2,...,n, we get 1 = a; + f;, where a; € a; and f; € ay - - - a;_1a;41 - - - a,. Then, for
Jj#i,

pi=0 (mod a;) (148)

fi=1 (mod q;) (149)
so fB; = (0,...,1,...,0). Finally, if ¢, ..., ¢, € R, then

n

Zciﬁi > (€1, .., Cy) € R/ag X -+ X R/ay. (150)

i=1

Thus, our map is surjective. It’s clear that the kernel is N}_, a;. O
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s N

Proposition 9.4

If R is a Dedekind domain, and py, ..., p, are distinct primes, then by linearity,

,
nes =] e (151)
i=1

|\ J

Proof. We will sketch the proof for r = 2. Let p, g be the two primes. It’s clear that
pgCpNa. (152)
For the other direction, since R is Dedekind, we can write
pna=p°-q -a (153)

where a is some ideal with no p’s or q’s in its prime factorization. We want to show thate = f = 1 and
a=R.
Suppose e > 2. Then p N q C p2. Now let 8 € q. Then,

pp CpnagcCp’ (154)
Multiplying by p~! on both sides (which we can do since pp~! = R), we get
BRCp=pfep (155)

This implies that ¢ € p. Since prime ideals are maximal, q = p, which is a contradiction. Thus,
e < 1. Similarly, f < 1. A similar argument shows that no other prime ideals can factor a. This implies

pNg=R,p,q,o0rpq. (156)

p N q is certainly not equal to R. It also isn’t equal to p or g, since otherwise this implies p = q.
Thus, p N q = pq. m]

Corollary 9.5
N(ab) = Na - Nb.

Proof. It suffices to show
L N(IT#;") = [I N(»;"), and
2. N(p¢) = N(p)©.

Not enough time, so we’ll only show the first one. We know that p; + p; = Rfor i # j, since p; + p;
strictly contains p; and p;. I claim that
b+ =R (157)

The proof is pretty simple: show that R = (p; + p;)“*%~! C p{* + p;j.
Now by the Chinese Remainder Theorem and our proposition,

RI[ o =rr gt = | | Rrvg (158)

is a bijection. Looking at the number of elements on each side yields
N([ [eiy =T NG, (159)
as desired. O
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10 Sept. 28, 2016

10.1 Finishing up the proof

Last time, we were halfway through proving N(ab) = Na - Nb. We now need to show that N(p€) =
N(p)¢. To do this, we need the following lemma.

Lemma 10.1

e+1

Consider p¢/p®*" as a R/p-vector space. Then, its dimension as a R/p vector space is 1.

Proof. Since p is strictly contained in R, then p¢*! is strictly contained in p¢. Thus, dim(p¢/p¢*!) > 1.
Now choose some & € p¢ \ p¢*1. We want to show that every element is a multiple of a. Consider
the ideal p*™! + aR. We have
pe+1 C pe+1 +aR C pe (160)

“Now we hit it with a big hammer” Unique factorization tells us that p¢*! + aR is a power of p. Since
the above inclusion is strict, it is not a multiple of p¢*!. Thus,

Pt + aR = p© (161)

which implies that a generates p®/p¢*! as an R/p-module. Thus, dim(p¢/p¢*!) = 1 as an R/p-module.
O

We now finish our proof that N(ab) = Na - Nb.

Proof. Now we will prove our claim by induction on e. The base case is clear, so assume it holds for e.
Consider the map
R/p¢*t — R/p¢ — 0. (162)

What is the kernel of the left map? p¢/p¢*!. This gives us an exact sequence of finite R-modules
0 — p¢/p°™t — R/p* — R/p® — 0. (163)

Since this is an exact sequence of finite R-modules, the size of the middle is equal to the product of the
sizes of the left and the right, i.e.

#(R/pe*Y) = #(0°/p°) - #(R/p°). (164)

Now by our lemma, p¢/p¢*! has dimension 1 as a R/p-module. Thus, it has #(R/p) = Np elements. By
induction, (#(R/p¢)) = N(p)¢. Thus,
#(R/p*") = N(p)*™! (165)

and we are done. O

10.2 Fractional Ideals

Let Ix = {(non-zero) fractional ideals of K}. Every C € Ik is uniquely written as

c=[]p© (166)

with e,(C) € Z. Why? We can find an @ € R with aC C R by just clearing all denominators of a
generating set. So we can write

aC = 1—[ per(@C) (167)
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We also have
aR = | |pe@®. (168)

Thus,
C = (aO)(a 'R) = | [perl@Oel@R), (169)

This immediately gives us the following.

Corollary 10.2
For all p € I, there exists a unique p € Ix with ab = R.

Proof. If a = []p%(®, then let b = [] p&®. .

Note that, by the above result, Ix is a group. One important subgroup of Ix is those generated by one
element, the principal (fractional) ideals.

{aR: @ € K*}. (170)

This is clearly a subgroup, since (aR)(SR) = (aff)R. Another way to define this is the image of the
map

K* i IK (171)

a— aR. (172)

Let the quotient of this map be Ck, the ideal class group. Cx = fractional ideals/principal ideals.

Then we get the exact sequence
K> Ig > Ck — 1 (173)

Now how do we make the left of this equation exact? That is, what « € K* satisfy «R = R? These
are the units of R. Thus, we have the full exact sequence

1> Ry > K' - Ig - Cg —1 (174)

where R} are the units of Rk. Both the unit group and the ideal class group are heavily studied in
algebraic number theory. Here are two theorems we want to prove this semester.

Theorem 10.3

Ck is finite.

Then, we can define hx = #Cg, the class number of K.

Theorem 10.4
R} is finitely-generated.

Then, as we saw in the beginning of class, rank(R},) = r; + r; — 1, where r; is the number of real
embeddings and 2r, the number of complex embeddings.
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10.3 Factorization in Extension Fields

Let R be a Dedekind domain, K be its fraction field, and let L/K be a finite extension. Let Ry be the
integral closure of Rk in L.

Proposition 10.5

R; is a Dedekind domain.

Proof. Same as our proof for when K = Q, Rg = Z. (need to look back in notes, 'm not sure what he’s
referring to). O

Here’s a picture.

R L C L
Rk Cc K
Let p C Rk be prime. Then pRy is an ideal of Ry . Is it prime? ... Probably not. For example, consider
Z[i] < Q@)
Z c Q

Then pZ|[i] is not always prime. For instance, 5 - Z[i] is not prime, since 5 = (2+i)(2—i) and neither
factor is in the ideal.
Let # C Ry, be a prime of Ry, with P | pRy. (Note that this is equivalent to pR; C #). This induces
a well-defined map
Ri/p < Ry/P (175)

Now Rk /p and Ry /P are finite fields. So one important question to ask is: what is the field exten-
sion?

Definition 10.6
The residue field degree of P /p is

f(P/p) = [RL/P : Rg/p]. (176)

What if # divides p multiple times? For example, with Z[i], we have 2Z[i] = ((1 + i)Z[i])*.

Definition 10.7

The ramification degree of P /p, denoted e(P/p), is the largest e > 1 with P¢ | pRy. If e > 2, we
say p is ramified.

We have the following fact, due to Dedekind, which will be proven later.

Fact 10.8. The set
{p C Rx : e(P/p) > 2 for some P | pR. } (177)

is finite.

For example, 2 ramifies in Z[i] while 5 does not. Below, we prove a useful formula.
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10.4 ref formula
( Theorem 10.9 )
Let p C Rk be prime, n = [L : K|. We can write
PRy =P PFT. (178)
(Note that e; = e(P;/p)). Then, )
D ePi/n)fPifp) =n. (179)
i=1

Proof. Taking the norm of both sides of equation 178 and using multiplicativity, we get

NGRy) = | NPy
i=1

= ILI #Rr /P
i=1

(180)

Since (Rp/P;)¢ is a Ri /p-vector space of dimension f(%;/p), which we abbreviate to f;, we get

r

NGRy) = | | #Ro/Pi)

i=1

= | JerRecsnyye
i=1

= | |crRec/mye
i=1

= (Np)¥i= eifi,
To deal with the other side of equation 180, we note that
(R/pRL) = (Rk/PRKk)".

Thus,

#(Rp/pRr) = #(Rx /PRk)" = (Np)".

Putting both sides together, we have
(Np)Zi=1 /i = (Np)".
Since p is a proper ideal, Np > 1. Thus, .
n= Z ei fi
i=1

as desired.
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11 Sept. 30, 2016

11.1 Dedekind’s Theorem on Ramification

Consider the usual picture

RL C

Recall the following definition.

Definition 11.1
Say pRk = p;' - p;’. Then p ramifies in K if any e; > 1.

It turns out that ramification is not common.

Theorem 11.2 (Dedekind)
p ramifies in K iff p | Dg/q.

Thus, there are only finitely primes that ramify in any extension K/Q.
We’ll prove the left-to-right direction, and the other direction will be homework. The proof will go
through the construction of something called the different.

11.2 Constructing the Different

Lemma 11.3

Consider the set a« = {@ € L : Tr(aRg) C Z}, where Tr(aRg) = {Tr(af) : f € Rx}. Thenaisa
fractional ideal.

Proof. Note that Rx C a. To show that a is a fractional ideal, we need to show that it’s a finitely-
generated Rg-module.
First we check that a is an Rg-module. Let f € Rg, @ € a. Then we want fa € a. We have

Tr(BaRk) = Tr(a(BRx)) C Tr(aRk) € Z (186)

since f € Rg. Thus, a is an Rg-module.
Next, we check that a is finitely-generated. Let wy, ..., w, be a Z-basis for Rk. Then the w; are also
a Q-basis for K. Consider the map

KxK-—->Q
(x,y) = Tr(x,y)

We showed that this map is Q-bilinear, and non-degenerate (we used independence of characters
to show this). Let w7, ..., 0}, (all in K) be a dual Q-basis for K. That is,

((,()i,(x);) = Tr(a)iwj) = 51',1'. (187)

34



11  Sept. 30, 2016 Math 2530: Number Theory Uthsav Chitra

This implies that Tr(fw;) € Z for all B € Ry, since f = ¥ bjw;, with b; € Z, and trace is Q-linear.
Thus, Tr(w;'fRK) C Z,so w; € a. We can write this as

Z Zo' Ca. (188)

Now we claim that the above two sets are in fact equal. If true, this will show that a is finitely-
generated. Let a € a. Since a € K, we can write & = }7_, a;w; for some a; € Q. Then

n

Tr(aw;) = Z a; Tr(wjw;)

i=1
n
(189)
= Z aiéi,j
i=1
= (1]'.

Since a € a and w; € R, it follows that Tr(aw;) € Z, so a; € Z. Thus,

ae Z VAR (190)
so a is generated by the w. O
This motivates the following definition.
Definition 11.4
The different of K/Q is
Dx/q = {a € L: Tr(aRg) € Z} . (191)

That is, it is the inverse of the ideal we were looking at before. Since Rk C a, then Dk /g = a™' C
Rk is an ideal of Rg.
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Example 11.5
Let K = Q(Vd) where d = 2,3 (mod 4), so Rx = Z[Vd]. Let w; = 1, w; = Vd. We claim the dual
basis is w; = % and w; = #3. To check
1
Tr(wwy) = Tr (E (192)
Tr(wy0?) = ( ! ) L _y (193)
r(ww =
o ovd)  2Vd 2V
d
Tr(wow]) = (%) (194)
N 1
Tr(wow;) = Tr (5 (195)
Thus, from the proof of the lemma, D Q= 1Z + \%Z We can write this as
ot ! (Z[Vd] + 2) = LR (196)
= — = — Rg.
K10~ oVd 2Vd
Thus, the different is Dg /g = (2Vd)Rk. Its norm is
NDk/q = [4d|. (197)

11.3 Refresher on Dual Bases
Let B: V x V — Q be bilinear. Choose a basis vy, ..., v,. Let M = (B(v;v;)). Then, if x,y € V, writing

x =) x; (198)
y= >y (199)
we can write

n
B(x,y)=(x1 -+ xp)M| : (200)

Yn

Now, B is nondegenerate iff det M = 0. To see this, first suppose det M = 0. Then, if y is in the
nontrivial kernel of M, B(x, y) = 0. The other direction is an exercise.

Now consider the vectors (M~ !)vy, ..., (M~ 1)v,. Should write it out carefully and show that this is
in fact a dual basis. This is useful, because then you can use it for computations.

11.4 Proof of Dedekind’s Theorem

First we prove the following proposition.

Proposition 11.6

N(®k/q) = |Dk/al, where Dg q refers to the discriminant of a Z-basis of Rg. (I think better
notation would be Dg, /7).
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Proof. Write Rx = Y, Zw; for some Z-basis w; of Rk. Then,

Dl =) Zo;. (201)

Now, both w; and w; are Q-bases for K over Q. So we can write

n

a);f‘ = Z a;ji (202)
j=1
n

wj = Z b,-ja);, (203)
j=1

where a;j, bj; € Q. Clearly (a;;)(b;;) = I. Now we want to relate these to the discriminant, which has
entries T(w;w;). Write

Tr(w;w;) = Tr(w; Z bjka);‘;)
k
= bjkwio} (204)
k
= bji-
The same reasoning says that Tr(wjw;) = b;j. Thus, b;; = bj;, so
Dkja = Dkjo(wi, ..., wn) = det(Tr(w;w;)) = det(b;;) = det(b;;). (205)
On the other hand, we have

Dia(wy, ..., 0,) = det(a,-j)z - Dg (@1, ..r 0n)
= det(a,-j)z . det(bij)

- (206)
det(bij)
1
Dk/a
where we use that (a;;)(b;j) = I. Now we need the following lemma.
Lemma 11.7
Leta C Rk, and writea = ¢;Z + -+ + a,Z. Then
Dk /o(a1, -... an)| = (N@)* - Dk al- (207)
We'll prove the lemma next time. But using the lemma, we have
Dija(wy, ..., wy) = N(@]—(l/@)z - Dk /q- (208)
Thus,
_ 1
N(®g,o) - Dkja = Dos = |Dk /ol = N(Dk/a)- (209)
K/Q
m}
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12 Oct. 3, 2016

No class.

13 Oct. 5, 2016

13.1 Finishing the proof of Dedekind’s Theorem

To recall, we were in the middle of proving that if p ramifies, then p | Dx,q. We were proving
Nk/a(®k/a) = IDk/al. (210)
We had gotten to the point where we needed to show that
D(®}, ..., 0,) = (NDg))* - Dk/a- (211)

This required the following lemma.

Lemma 13.1
Ifa CRgk,a=Zay +--++ Zay,. Then,

D(ay, ...,an) = (Na)*Dxg/q. (212)

Proof. Write Rx = Zwq + - - - + Zwy,. By definition,
Dk /g = D(ws, ..., wn). (213)

Furthermore, since «; € Rk, we can write

=M| : (214)

Qn Wp

for some matrix M with entries in Z. Using Gram-Schmidt, we can find a new basis f; for a so that M
is lower-triangular.

ﬁ ai 0 N 0 ®

! ax a4z -+ 0 '
=l T (215)

: : -\,

fn dn1 QAn2 °°°  Qnn "

So we can write a = Zf; + - - - + Zf,, where

p1 = anw (216)
P2 = az11 + azw; (217)
(218)
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Since the «; and f; have the same Z-span,
D(al, ceey an) = D(ﬁl, ceey ﬁn)
= (det M)? - D(wy, ..., Wn) (219)
= (a1~ @nn)’D(@1, .., ),

where we use that the determinant of a lower-triangular matrix is the product of its diagonal entries.
Now we need to show that a1 - - - an, = Na. We have

Na = #Rg/a
B Zwi+ -+ Zowy,
2B+ -+ ZBy
(220)
Zw1 Za)z
=# X X oo
Zaua)l Za22w2
= la1azz - - annl-
O
Next, we show the following lemma.
Lemma 13.2
Letp € Z,'B € Rk, where pe®/p) | pRx and e(B/p) is maximal. Then,
peB/p)-1 | Dk/0- (221)
Proof. Write e = e(*3/p), and
PRk = Bca (222)
where *B 1 a. Let f € Ba. Then, we can write
t
p=> ma (223)
i=1
where 7; € B, a; € a. Raising this to the pth power, we have
pP = Z x’a”  (mod pR). (224)
In fact, we can keep raising this to the pth power, giving us
prr=y "™ (mod pRy). (225)

m m
Choose an m with p™ > e. Then, nf € P, and (xf € q, so

pP” € Pa = pR. (226)

This implies that Tr(8?") € pZ, since we can write " = pr for some r € R, and note that Tr(r) € Z.
Let f1, ..., Bn be the conjugates of §. Then,

Te(p) = B 4+ B
=(fy+--+Pm)"  (mod pRg) (227)
= Tr(f)*" (mod pRy).
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Since p | Tr(BP™), we have p | Tr(B)?". Thus, p | Tr(B), so
Tr(Pa) C pZ.

This is equivalent to
Tr(p~'Pa) c Z

since trace is Q-linear. Now recall

Dy ={a € K: Tr(aRk) € Z} > {a € K : Tr(a) C Z}.

Thus,

piPa c Dl = (Ba)Pa c Dy

= Pl ¢ D}I/@

= Dxjo C P,

and we are done.

Finally, we prove Dedekind’s theorem.
Proof. Suppose p ramifies. Write

p =%
with e > 2. By the lemma we just proved,
P! | Dxja = B | Dx/a
since e > 2. Taking norms of both sides,
N | NDg/q.

(As an aside,

alb=>bcCa

= R/b onto, R/a
= #(R/a) | #(R/D)
= Na | Nb.

shows why taking norms of both sides holds).
Finally, by the lemma from last class, we have

PP | D gl
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13.2 Explicit Factorization Theorem

4 )

Theorem 13.3

Consider a finite extension K/Q. Suppose Rx = Z[0] for some 6 € K. Let f(x) € Z[x] be the
minimal polynomial of 6. Let p € Z be prime. Consider f(x), the reduction of f(x) mod p, and
factor it into irreducible factors

fe) = i) fo(0)* -+ fr(x)* (mod p). (237)

Define
PB; = pRx + fi(O)Rk. (238)

(Note that it doesn’t matter how you lift the coefficients of f; to Z, since the pRx term absorbs
any multiples of p). Then,

1. *B; are prime ideals in Rg;
2. N, = pdegf"; and
3. pRx =B --- Py

In particular, p ramifies iff its minimal polynomial has a double root mod p, which is true iff

the discriminant of its minimal polynomial vanishes.

13.3 Finiteness of the Class Number

Our next goal is to prove the following theorem.

Theorem 13.4

Ck is finite, where Cx = Ix/Px, Ik is the group of fractional ideals, and Pk is the group of principal
ideals.

Write hg = #Ck. This gives the following corollary, which is essentially Lagrange’s theorem for
groups.

Corollary 13.5

If a is any ideal, then a” is a principal ideal.

We’ll now start to prove the theorem. We disguise this by proving a very hard lemma, and then
using that to easily prove the theorem.

Lemma 13.6

There is a y(K) such that, for every ideal a C R, there is a (non-zero) a € a satisfying

|NK/@0{| < }/(K) . NK/@G. (239)
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We not only want to prove the theorem, but we also want to compute explicitly what y(K) is. This
will give us an algorithm to compute the class group? We’ll do more next time.

14 Oct. 7, 2016

I got lazy and handwrote.

15 Oct. 10, 2016

No class, school holiday.

16 Oct. 12,2016

No class, Yom Kippur.

17 Oct. 14, 2016

17.1 Lattices and Fundamental Domains

It’s been a long break, so let’s refresh. Our goal is to prove that the ideal class group, Ck, is finite. To
do this, we need the following lemma.

4 )

Lemma 17.1

For all a C Rk, there exists a nonzero a € a with
INa| < cxNa (240)

for some constant cx, whose value only depends on K.

We proved that the above lemma implies the finiteness of the class group.

Definition 17.2

A lattice L ¢ R" is a discrete subgroup of maximal rank.

We proved last time that this is equivalent to writing L = Zw; + ... + Zwy, with the w; linearly-
independent.
Define the fundamental domain

P:{t1w1+---+tnwn:05ti<1}. (241)

Note that P — R"/L is a bijection. Note also that, for n = 2, R?/L looks like a torus, since we can
identify the top and bottom edges of the parallelogram, and the left and right edges.

Lemma 17.3

vol(P) does not depend on the choice of basis for L.
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Proof. Let w; and ] be two (Z)-bases for L. Write

a)lf = Z a;jji (242)

for some integers a;;. Let A = (a;;). Since the w; are also a basis, A is invertible. Since the entries of A
are integers, det A = +1. From basic calculus,

vol(P’) = vol(AP) = | det A| vol(P) = vol(P). |

Definition 17.4
The volume of L is vol(P).

17.2 Minkowski’s Lemma

Our goal in this section is to show that, if S ¢ R", with sufficient conditions, then S must contain a
lattice point.

Theorem 17.5 (Minkowski)

Let L ¢ R" be a lattice, and S ¢ R” (Lebesgue-) measurable. Assume p(S) > vol(L). Then, there
exist x,y € S,x # ywithx —y € L.

Proof. We can write

R" = U P+, (243)

the disjoint union of parallelopipeds with lower-left corners at each lattice point. So,

S:LJSH@+A) (244)
Ael

Then,

HS) = ) (SN (P +2)

A€l (245)

= Z u((S = A) N P), since Lebesgue measure is translation invariant.
A€l

Now suppose for the sake of contradiction that the (S — A) N P are disjoint for all A. Then,

P> J(s-nnPp)

A€l

= u(P)z ) u(S=D)NP)=u(s)
A€l

(246)

But we assume p(P) < p(S), so this is a contradiction. Thus, the (S —A) N P are not disjoint, so there
exist A1 # A, in L and a point x with

xeS-A)NP (247)
x€(S—-A)NP. (248)
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So we can write

X =81 — /11 (249)
X =8y — /12, (250)

for s1, s, € S. Subtracting the two, we get that

So—81 = /11 - /11 # 0. (251)

Thus, we have two points in S whose difference is in L. O

To show that a subset S € R" contains a lattice point, we need some restrictions on S.

Definition 17.6

Let S ¢ R”". Then we say S is symmetric if

We say S is convex if

xeS = —xe8. (252)

xyeS = {tx+(1-t)y:0<t <1} CS. (253)

|

Theorem 17.7

Let L ¢ R" be a lattice, and let S € R" be measurable, symmetric, and convex. Then,
(a) If p(S) > 2" vol(L), then there exists 0 # A € SN L.

(b) If u(S) = 2" vol(L) and S is compact, then we have the same conclusion.

J/

Proof. (a) Consider S’ = %S. Note that vol(S’) = zl,, vol(S) > vol(L). Then, by Minkowski, there exist

distinct %x, %y, with x,y € S, and %x - %y € L. We can write
Sx =y = 20+ 5 (). (254)
Since S is symmetric, —y € S. Since x is convex, any point on the line between x and —y is in S.
Thus, %(x) + %(—y) eSNL.
Let € > 0. Then,
p((1+€)S) = (1+¢e)"u(S) > 2" vol(L), (255)

so by the previous part, (1 + €)S N L has a non-zero point. By our original definition of a lattice,
since (1 + €)S is compact, (1 + €)S N L is finite. Consider the set

Ne>o (1 +€)SN(L\{0}). (256)

These are finite, non-empty, nested sets (to get a sequence of sets, write ¢ = 1/k). Thus, the
intersection is non-empty as well.

Since S is closed, Ne¢>o(1+ €)S = S. Therefore, SN (L \ {0}) is non-empty, so there exists a non-zero
lattice point in S. O
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17.3 Back to the class number

Let K be a number field, and let n = [K : Q). Then, we know there are distinct embeddings
o1,....,0n : K — C. (257)

If o(K) ¢ R, we say o is a real embedding. Otherwise, o is a complex embedding ad has a
conjugate embedding &, where (o) = o(a). Let

O1, - O, (258)
be the real embeddings, let
Ori+1s -5 Ory+ry (259)
be distinct complex embeddings, and let
O_-V1+13 (] 6r1+r2 (260)
be the conjugates of the complex embeddings. Using ¢ = (o1, ..., 07, +r,), We can embed
K < R x C"? = R1*2" = R™, (261)

We call ¢ the canonical embedding of K.

18 Oct. 17,2016

18.1 Computing volumes of ideals

So say K/Q is an extension of degree n. Let oy, ..., 0., be the real embeddings, ¢, 41, ..., 04, +r, be the
distinct embeddings into C (i.e. not conjugates). Let

0= (01,000 Oppiry) : K > R X C™2 = R = R™, (262)

Proposition 18.1
Let a C K be a fractional ideal. Then

(a) o(a) is a lattice,

(b) Write a = Zay + - - - + Zarp,. Form the n X n matrix (o;(e;)). Then, vol(c(a)) = 277?| det(o;(a;))|.

|\ J

Proof. We’'ll prove (a) later. (We’ll in fact estimate how many points there are if we intersect with a
compact set). For the second part, recall that we identify C with R? by

C = R? (263)

z o (R(z), 3(2)) (264)
zZ+2zZ z—2

- ( 2 72 ) (265)
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Writing out the matrix o;(;),

o())
' (266)

5(a))

Since the determinant is preserved under row operations, the following matrix has the same de-
terminant.

o(a)) ; &(a)) o(ay) v & (atj) Zﬁkaj)
: = : =l | (267)
5(aj) = j(o(a) +a(a) | |=3(o(e) = ()| |-iT(e)
Note that the first r; rows have not changed. So we have
O'l(aj)
O-rl(‘aj)
R(or+1(ay))
det(o;(a;)) = (=2i)" - det :
R(0r,4r,(@) (268)
3(or+1(ay))
5(0r,11(a)
= (=20)" - | det(a(a))].
Thus, vol(a(a)) = |det(o(a))| = 2™ det(oi(a;))|. O

Proposition 18.2

Let 0 : K — R", o C Rk a non-zero ideal. Then,

(a) vol(o(Rk)) = 27" - |Dg,ql|"/%. (Note that this is why the discriminant is so fundamental! It
controls the volume of the fundamental domain of an ideal).

(b) vol(a(a)) = 27" - |Dkal/*Na.

|\ J

Proof. Write Rx = Zw1 + - -+ + Zwy. Then,
vol(o(Rk)) = 27| det(o(w)))I. (269)

But we proved before that |Dg q| = (det(c(w;)))?, so the result follows.
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For b, we note that a fundamental domain for R"/o(a) is

U (fundamental domain for (R"/o(Rk)) + x). (270)
xERK/(I
Thus,
vol(o(a)) = vol(c(Rk)) - #(Rk/a) = vol(c(Rk)) - Na. (271)
(Another way to think of it: the map R"/o(a) — R"/o(Rg) is Na-to-1. It is measure-preserving,
so the area of the fundamental domain in R” /o (a) is Na times the area in R”/o(Rg)). |
Theorem 18.3

Let K/Q be an extension of degree n = r; + 2r,. There is a constant C = C(ry, ;) such that, for all
nonzero a C Rg, there is a (nonzero) a € a satisfying

INa| < C - |Dk/q|"/*Na. (272)

As we saw before, this implies Ck is finite.

| J/

Proof. Let o : K < R" xC" be our usual map. Then o(a) is a lattice, and vol(c(a)) = 2772|Dg q|'/2Na.
We want to use Minkowski’s lemma here. So, for t > 0, define the region

2 2
B, = {(y, 2) €R™XC?: Y |yl +2 ) |zl < t}. (273)
i=1 i=1

We note that B; is

« compact,

« convex (use triangle inequality)
« symmetric.

Its volume is
H(By) = t"u(By). (274)

Since B; is compact, choose t such that u(B;) = t"u(B;) = 2" vol(o(a)). Thus, by Minkowski’s,
there exists a nonzero o(«r) € o(a) N By; that is, a nonzero lattice point in B;. Then,

n

Nal = || | oite)

i=1

ri+ry 2

=fh@-ﬂmm

i=1
=] Jwl-1] [P

where, abusing notation, let y; = o;(a) fori = 1,...,r, and let z; = g;(«) for i > r;. We know

Dyl +2 ) fl <t (276)
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We want to bound Na, which is the product of the y; and z;. We have a bound on the sum of the

y; and z;, so this suggests using the AM-GM inequality! By AM-GM, we have

2\l/n 1
(T - TT2l) " =5 it +2 3 =) - (277)
The above equation implies
1 1
(No)/" < =t = Na < —". (278)
n n"
Since we chose a specific value of ¢, we get
ri+2ry 1/2
INa| < IDx /al/2Na. (279)
u(Bnn
If you do a lot of calculus, you can work out what p(B;) is, and our bound becomes
4\ n!
INe| < (—) - Di ol /?Na. (280)
T n"
(To get a more tractable bound, one can bound ”:—,'1 using Stirling’s). O
Thus, summing up all of our work, we have the following theorem.
Theorem 18.4
Every ideal class in Hg = Ix/Pk contains an ideal a C Ry satisfying
4\ n!
Na < (—) Dk sal'2. (281)
/) n"

J

One corollary, which we’ll do next time, is that [Dgq| > 2 for all extensions K/Q with [K : Q] > 2.

19 Oct. 19, 2016

19.1 Corollaries of Ideal Bound

Last time, we proved the following.

e

Theorem 19.1

For all non-zero a C Rk, there exists non-zero a € a with

4\ n!
INa| < (—) ™ Dk[Na. (282)
w/) n*
We have the following corollary.
Corollary 19.2
Every ideal class contains an ideal a sayisfying
4\ n!
Na < (—) Z Ipk|V2. (283)
/) n"
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Proof. Let b be an ideal class. From previous work, we can assume b~! C Rg. By the theorem, there
exists non-zero y € b™! with

Ny < CIDg|'2N(67!) = N(yb) < C - |Dg|*/2. o

Here is another corollary.

Corollary 19.3
Say n = [K : Q] > 2. Then
x (3m\"!
|Dk| = 3 (T) : (284)

Further, this implies that if [K : Q] > 2, then there exists at least one prime p € Z that ramifies
in K.

|\ J

Proof. The second statement clearly follows from the first, since the first implies |Dg| > 1 and we know
p ramifies iff p | |Dk].
For the first statement, we use the previous corollary. Since Na > 1, we get

T\ [(n™)\?
D z(—) (=
Dl = (2 ()

285
n [\ (285)
SHREE
4 n!
where we use, r; + 2r, = n, we have 2r, < n.
As an aside, note that, for large n, we could use Stirling’s approximation,
n n
n! ~ (—) 2n, (286)
e
and get
T\" 1 1 (me?\"
Dy > (_) L (287)
4 2rn 27nn \ 4
asymptotically.
n\2
Back to the proof. Let A, = (%)n : (%) . We want to show
r (3m\"!
Ap > —- (—) . 288
22 (2 (28)
This is mostly algebra. Inductively, we compute
An+1 _ %(1 + %)znAn
= —
(7/3)(3r/4)" Z(3z)
-1
Fa+ 75060
- n
5GP
1 1 2n
=< (1+-)
3 n
1 1\*
> = (1 + —)
3 2
>1 O
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Corollary 19.4 (Hermite)
Fix T. Then, Fr := {K/Q : |Dg| < T} is finite.

Proof. If K € Fr, then,
o (3r\"1
T>Drx > — (—) . 289
=2 (3 (289)

This implies there are only finitely many choices for n, which in turn implies there are only finitely
many choices for r; and r,. So it suffices to show that

Fr.r.r, = {K/Q:|Dg| < T, ri(K) = r1,75(K) = 12} (290)

is finite.
Our strategy is to find a finite set {f1, ..., B}, where Q(p;) is one set in Fr ., »,. We will do this using
the geometry of numbers. For simplicity, we assume r; > 1 (if not, will have to modify argument).
Let K € Fr,;,.r,- Consider the set

1 T\ 1/2
S={(y,z) e R" xC" 1 |y;| < 7 2" (5) IDk "2,
1
lyel, s lyn | < 5 (291)
1
|Zl|9 cre |Zr2| S 5}'
S is compact (closed, bounded), convex (triangle inequality), and symmetric. Its volume is
1, (m\ " \"t oy
= (252 (3) o) (23) - ()
vol($) = (222" (2) " b ) (2
292
= 2"27"|Dg q|'/? 29
= 2" vol(Rk).
Let o = (01, ..., Op4r,) : K == R™ X C™2. By MInkowski’s, there exists 0 # f§ € Rk with
o(f) € o(Rg)NS. (293)
Claim 19.5. K = Q(p).
Claim 19.6. {fx : K € Fr ., } is finite.
To prove the first claim, since o(f) € S, we have
1
lo2 (B, s lor+r ()] < > (294)
We also have
ri+ry
[]oB)|=Np=1. (295)
i=1

This implies 01(f) # o;(f) for i > 1, since otherwise N would be less than 1. I claim in fact that
0i(B) # oj(P) for i # j. This is something we should check on our own.

So assume the o1(p), ..., 0y, +r,(B) are distinct. This implies [Q(S) : Q] > n, since it has at least n
distinct embeddings. But since Q(f) is a subfield of K, and [K : Q] = n, it follows that K = Q(p).

For the second claim, we need the following theorem.
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s N

Theorem 19.7
Say [K : Q] = n, and let 0y, ..., 0, : K < C be distinct embeddings. Then,

{a € Rk : |oi(a)] < Bforall1 <i<n} (296)

is finite.

|\ J

Proof. Using oy, we have K C C. Look at the polynomial

Fp(x) = | |G = ou(p)), (297)
i=1

where Fg(f) = 0. Expanding out Fg gives
n . .
Fp(x) = Z(—l)"—lij”‘f (298)
=0

where S is the jth symmetric polynomial in 61(B), ..., 5,(8). Thus, S; is Gal(Q/Q) invariant, so S; € Q.
Furthermore, the S; are integral over Z, since each 0;(f) € Rk. Thus, S; € Z.

Not enough time to finish the proof now, but the next step is to prove that |S;| < (2B)". Since the
S; are integers, there will only be finitely many possibilities. We’ll finish this theorem, and the second
corollary, next time.

20 Oct. 21, 2016

20.1 Continuing corollaries from last time

We were proving the following theorem last time.

Theorem 20.1
Let K be an extension of Q, with [K : Q] = n, and let oy, ..., 0, : K < C be distinct embeddings.
Then,

Sg ={a € Rk : |o;(a)] < Bfor1 < i < n}. (299)

is a finite set. (Assume B > 1).

|\ J

Proof. Use o, to identify K c C. Last time, we looked at the polynomial
n
Folx) = | |x - ai(@)). (300)
i=1
We proved last time that F,(x) € Z[x]. We also have

Fo(x) = an(—n"—fsj Cx" (301)
=1

J
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where §; is the jth symmetric polynomial. We bound S; below.

1551 = 1S)(01(@), ... aw(@))]
> lou@- oy (@)

1<i;<...<ij<n

IA

< B (302)
1<ij<...<ij<n
()
J
< 2"B" = (2B)".
Thus,
Sp C {roots of polynomials in Z[x] with |a;| < (2B)"}. (303)

There are only finitely many integers less than (2B)", so there are only finitely many such polyno-
mials. Each polynomial has at most n roots, so it follows that the RHS is finite. O

Note that this proves the theorem from last time: that there are finitely many fields extensions (of
Q) of bounded discriminant.

Corollary 20.2 (Kronecker)

loi(er)] = 1 forall 1 < i < niff @ is a root of unity.

Proof. One direction is straightforward: a" = 1, then |o;(a)]® = 1" = 1. For the other direction,

suppose |o;(r)| = 1 for all i. Then, for all k > 1,
loi(@)| = loi(e)]* = 1. (304)

Thus,
{aF :k>1yc{B:|oi(f) < 1forall1<i<n} (305)

By the previous corollary, the RHS is finite. Thus, the LHS is finite, so for some ky, k; we have

ak = ok, (306)
Thus « is a root of unity. O
20.2 Dirichlet’s Unit Theorem

Theorem 20.3

Let K/Q be an extension, with r; + 2r, = n = [K : Q]. Then, R} is a finitely-generated abelian
grop of rank ry + r, — 1. Additionally, if we write

R} = (finite group) x Z"*"271, (307)

then the finite group is cyclic.

To prove this, we first prove the following lemma.
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Lemma 20.4

Let ¢ € K. Then,
@ € Ry & Na ==+1, and a € Rk. (308)

Proof. Suppose a € R}.. Then, there exists f € R}, with a8 = 1. Taking norms of both sides, Na - Nf =
1. Since «, € Rk, both Na and N are integers, so we must have No = +1.
Next, suppose a € Rg and Na = +1. Let

" +ax™ o+ a, € Z]x] (309)

be the minimal polynomial of «. We have a, = +Na = +1, so

n-1

a+aiad” 4+ tapax1=0

310
= a(a™ '+ +a,_) = £1. (310

O
Now, armed with this lemma, we prove Dirichlet.

Proof of Dirichlet. To show that R} is finitely-generated, our idea is to embed R}, into R™ for some N.
But this is not possible if R has an element of finite order. So let’s try and embed R} /torsion subgp.
into RN,

Let oy, ..., 0y, be the real embeddings, and oy, 41, ..., 0,4+, be the distinct (non-conjugate) complex
embeddings.

Before, we had the map

KSR xC™. (311)

This respected addition in K, but not multiplication. We could change K to K*, but we need the
image, in R* x CY, to respect addition. So instead, let’s use logs, which change multiplication to
addition.

Formally, define

L:K"— RN (312)
& > (10g(61(@)). .. 10g(0r, 41, (@))). (313)
L: Ry — R"™" is a homomorphism.

Claim 20.5. Im(L) is discrete. Hence, L(R},) is finitely generated, of rank < ry + r».

Proof. Define
Dg = {v € R"*"2 : |v;| < B}, (314)

a box of size B. Consider the set
L(Rk) N Dg. (315)

We want to show this set is finite, as this implies that L(R},) intersects compact subsets in at most
finitely many points.
Let v € L(R}) N Dp. Write v = L(a) for some a € R},. Then,

logoi(a) < B (316)

foralli=1,...,n. So,
L(Ry) N Dp € L({a € Ry : |oy(a)| < € for all i}). (317)

From our previous result, the RHS is finite. Thus, the LHS is finite, so L(R}}) is discrete.
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Claim 20.6. ker(L : R}, — R"*"?) = {roots of unity in K*}.

Proof. Suppose {™ = 1. Then |0;({)| = 1 for all i, so L({) = 0.
For the other direction, suppose a € ker(L) N Rj.. Then,

logloi(a)| =0 = |oi(a)l =1 (318)
for alli = 1,...,n. By Kronecker’s, « is a root of unity.

Thus, by the claims, we have the exact sequence.

L
1 — roots of unity in K* — R} — discrete subgp. of R"*"? — 0. (319)

Now, what is rank Ry = rank L(R},)? If we try an example, say with a quadratic extension, we see
r1 + 1y is too big.
Say a € R}, so [Na| = 1. This implies

ri+ry
1= ﬂ i@l [ ] loi(a)P. (320)
i=r;+1
Taking log of both sides, we get
ri+ry
O—Zlog|o,<a>|+2 > logloi(a)| (321)
i=r;+1

Now, log|o;(a)| are the coordinates of L(a). So the coordinates of L(«) satisfy the above linear
equation. Writing this out,

LRy C{y e R™™Z cyi 4+ ypy + 2(UYrye1 + - + Ypyary) = 0} = R7TF27L (322)

Thus, L(R},) is discrete, and rank L(R}) < r := r; + r; — 1. Thus, our final step is to show equality.
Somehow, we need to create lots of multiplicatively independent units in R}.. The idea, which we’ll get
to next time, is to create lots of principal ideals «; Rk of “bounded size” By pigeonhole, we’ll show that
two of the ideals we created are the same, so that

OCiR = Oth, (323)

so that a;/a; € Ry. We'll also need to talk about the dual space of L(Ry), which is the group of
functionals f : L(R}) — R.
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Handwrote

22 Oct. 26, 2016

22.1 Cyclotomic units
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Example 22.1

Suppose K = Q({p), p > 3. Then, r; = 0, since none of the roots of unity are real, and r, = 1%1’ SO

rank Z[{,] = 1%3. (324)

Note that for p = 3, the rank is 0, which makes sense, since Q({3) is a quadratic extension.

Below are some facts about cyclotomic units. We won’t prove them, and they’re hard to show.

Proposition 22.2

% € Z[{p]" for 0 < i, j < p. Call these quantities cyclotomic units.

Let C be the subgroup of Z[{,|* generated by cyclotomic units.

4 )

Theorem 22.3

The following two facts are true.
1. C is a subgroup of finite index in Z[{,]".

2. (Z[{p]" : C) is approximately the class number of Q({},).

22.2 Regulator
Suppose o : Rx < R’ x C"2. Then, vol(c(Rg)) ~ |Dk|'/?. Now, this induces a map
L:Ry — HCR"™ (325)

for some hyperplane H.

Definition 22.4
The regulator of K is Reg(K) = vol(L(R},) in H).

Let uy, ...,u, € Ry be independent units, where r = r; + r; — 1. Let 01, ..., 0,41 be distinct (non-
conjugate) embeddings. Then,

loglow(u)| ---  2logloi(uy)l
Reg(K) = |det : : . (326)
logloy(uy)| ---  2logloy(uy)l
22.3 Localization and Dirichlet’s S-unit Theorem
Let S be a finite set of primes of Rx. Let Rx s be the localization of Rk at S. That is,
Ris ={a € K : ordy(a) > 0 for all p € S}. (327)

If aRk = p;{* - - - p;", then ordy(a) is the exponent of p in aRk.
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Theorem 22.5 (Dirichlet’s S-unit Theorem)

Ry s = K X 2z IS where pik is the roots of unity of K.

Example 22.6
Say K = Q,S = {p1,....p+}. Then, Zs = Z[pil, s pit], and

Z = {+1} X (group generated by py, ..., p;). (328)

22.4 Galois Theory and Algebraic Number Theory

4 )

Example 22.7

Say charK # 2, and [L : K] = 2. Then by the quadratic formula, L = K(Vd). G(L/K) = {1,0},
where o(Vd) = —Vd.

Example 22.8
Say char K = 0 or p, with p 1 n. Consider the extension K({,)/K. We have the map

K(¢n)/K — (Z/n2)" (329)
o i(o) (mod n), where i(c) is such that o({,) = ,i,(a). (330)

Example 22.9

Finite fields. (Why is this important? If we have a number field K and a prime ideal p, then R /p
is a finite field; it’s a field since p is prime, and we showed before that it’s finite for any ideal).
Recall that, for each prime power g, there is a unique field F; with #F; = g. We have

[qu C [Fqn — m | n. (331)

We also have G(Fyn/F;) = Z/nZ, so G(Fyn/F,) is generated by the map o4(r) = a9. Then,
ag = og. The map oy is called the (g-power) Frobenius map.

| J/

Our goal for this section is as follows. Let K/Q be Galois (if your number field isn’t Galois, you can
find some Galois extension). Take p C Rk. Then there exists o € G(K/Q) that “looks like” Frobenius
for p. That is,

o(a) = ™ (mod p) (332)

for all ¢ € Rk.

22.5 Starting to prove Galois theory facts
Let L/K/Q be extensions, with L/K Galois. Then R C R;. Let G = G(L/K).
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Proposition 22.10
Let 0 € G. Then,

(@) o(RL) =Ry,

(b) Let | p, where p C Rg, P C Rr. Then, o(P) | p.

|\ J

Proof. For the first part, let « € Ry. Then, « is a root of monic polynomial f(x) = ¥, a;x’, so o(a) is a
root of 3 o(a;)x’ = f(x), since o fixes Q. Thus, o(a) is integral, so o(a) € R;.
For the second part, we have
P | p = pRy = Pa, for some a
= o(pRL) = o(P)o(a)
= PRy = o(P)o(a), since o fixes p and Ry,
= a(P)|». O

Notice that we have the isomorphism
Ry /P — Rp/o(P)
am o(a).

Now, write
PRy = plel e, (333)

with }\i_; e; fi = n, where f; = [Rp/P; : Rx/p]. Then, o € G permutes P, ..., P,. Let P | p. We have

fle(®P)/p) = f(P/v) (334)
e(a(P)/p) = e(P/p) (335)
The first equation follows from Ry /P = Ry /o(P). For the second one, note that if # | p and o(P) | »,

then p’ = p- P71 o(P)7! is a proper ideal. As long as we can keep dividing by P, we can also keep
dividing by o(#)~!, so the second statement follows.

Theorem 22.11

G(L/K) acts transitively on the primes # | p. This means that, for all i, j, there exists o € G(L/K)
with o(P;) = P;.

We don’t have time to prove this theorem, but here’s a corollary.

Corollary 22.12

If L/K Galois, then
PR = (Pr---Pr), (336)

with f(P;/p) = f the same. In particular,

efr=n=[L:K]. (337)
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Got lazy and handwrote.
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24.1 Finishing proof of decomposition group isomorphism

Our current diagram

L—3 R, P Fp
K —— Rx p Fy
We defined
Dp ={c€G:0(P)=P} (338)
Ip={c€G:0(a)=a (mod P)forallx € R } (339)

We get a map Dp — G(Fp/F,). The kernel of this map is Ip. We will show that this map is
surjective.

Proof. Let Kp be the fixed field of Dp (or LP?). That is,
Kp={aeL:o(a)=aforallc € Dp}. (340)
Also, let Rp be the ring of integers of Kp, Pp = Rp NP, and Fp = Rp/Pp.
Claim 24.1. F, — [Fp is an isomorphism. (F, c Fp).

Proof. Since Pp C P, factoring Pp in Ry,
PpRL, = (01(P) - 0,(P)) P/ 7P) (341)

where o1(P), ..., 0,(P) are the distinct conjugates of P for 0 € G(L/Kp) = Dp. But by definition, the
image of P in Dy is P, so
PpRy = PP/Pp), (342)

By the ref theorem,
[L:Kp]=e(P/Pp)- f(P/Pp)=e(P/Pp)[Fp :Fpl. (343)
On the other hand, [L : Kp] = #Dp by Galois theory. From last time, we have
#Dp = e(P[p) - f(P/p) = e(P/p) - [Fp : K] (344)

Thus,
e(P/Pp) - f(P/Pp) =e(P/p)- f(P/p) (345)

Now, since F, c Fp C Fp, we have

f®/p) z f(P/Pp). (346)
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Finally, we can factor p in Rp as

Note that, since Kp is not necessarily Galois over K, we cannot assume all the primes have the same
exponent. Factoring p in Ry gives us

PRy, = P¢P/P . (other primes). (348)
Now, we could have first factored p in Rp, and then moved that factorization up to Ry. Thus,
PRy = ‘PB(PD/’J) - (other primes) = P¢Fa/P)e(P/Pp) . (other primes). (349)
Comparing exponents, we get

e(P/p) = e(Pa/p) - e(P/Pp). (350)

(This is a tower law for e!, f follows one as well, by finite fields results). In particular, this implies
e(P/p) = e(P/Pp). Now, each term on the RHS of 345 is greater than the LHS term. But since their
product is equal, this implies e(P/Pp) = e(P/p) and f(P/Pp) = f(P /).

Thus, [Fp : F,] = 1, so F, < Fp is an isomorphism. ]

Now, back to the theorem. Recall the primitive element theorem: if L is a separable extension of

K, we can write L = K(a) for some a € L. So we can choose a € Ry with Fp = Fy(a,), where @ = «
(mod P) in Fp. Now let

f(x) =x"+a;x"' +-- - +a, € Ry[x] (351)

be the minimal polynomial of & over Kp. We can also write

fo) = [ (x - o(@) = [] @-o@ (352)

0€G(L/Kp)/othat fix a o in some subset of Dp

since G(L/Kp) = Dp. Reducing this mod P, we get

fex) =) ax' € Fp,lx]
i=1 (353)

= []  G-ola)

o in some subset of Dp

We also know that f(@) = 0. Thus,
(min. poly of @ over Fp,) | f(x). (354)

By field theory, the roots of the LHS are the G(Fp/Fp,,) conjugates of a. Thus, every G(Fp/Fp/,)
conjugate has the form o(c) for some o € Dy, so every element of G(Fp/Fp) has the form & for some
o € Dgp. Thus,

Dp — G(Fp/Fp) (355)

is onto. By our claim, G(Fp/Fp) = G(Fp/F,), so we are done. O
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s N

Corollary 24.2

Consider the diagram

L Ppo P

K—>np

Then, p ramifies in L iff there is some # | p with Ip;, # 1, which is true iff every # | p has

|\ J

Proof. We showed that #I(P/p) = e(P/p), which implies the first statement. For the second part, we
note that
I(xP[p) =t 1(P[p)r, (356)

so if I(P/p) # 1 for one P, then I(P/p) # 1 for all P. O

24.2 Abelian Galois groups

We also make the following (important!) observation. If L/K is abelian (so G(L/K) is abelian), then
D(P /p) and I(P/p) only depend on p. This is because

D(z(P)/v) = t'D(P/p)t = D(P/p) (357)

using commutativity (as L/K is abelian). Similarly, I(z(P)/p) = T(P/p).

24.3 Primes that don’t ramify

A generalization of a previous result is that, if L/K is an extension, then p ramifies iff p | Dr k.
So consider a prime p that does not ramify in L. Then e(P/p) = 1, so #I(#/p) = 1. Thus, we have
an isomorphism
Dp — G(Fp/F,). (358)

Now, G(Fp/[F,) is a cyclic group generated by the map a — a™* = a*”. So Dy is cyclic as well, and
we know what its generator should look like.

Corollary 24.3
If p is unramified in L/K, then for each P | p, there is a unique element (¥, L/K)
(P.L/K) € Dp C Gr/x (359)
with
(P,L/K) (mod P) = Frobenius element in G(Fp /F,). (360)
That is,
(P,L/K)-a =a™ (mod P) (361)
for all @ € Ry. This is called the Artin symbol of #/p.
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