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High-throughput sequencing technologies are ubiquitous in modern biology, generating over a zettabyte (109

TB) of data annually [1]. The development of breakthrough technologies – including spatial sequencing, CRISPR-
based gene editing, and deep mutational scanning – has enabled scientists to measure diverse molecular modalities
(e.g., DNA, RNA, proteins, metabolites) in many biological systems at an unprecedented throughput and resolution.
Machine learning (ML) methods are essential for analyzing and interpreting these large and high-dimensional
sequencing datasets. However, standard “off-the-shelf” ML methods are severely challenged by the high noise,
sparsity, heterogeneity, and other limitations of modern sequencing technologies. Thus, my research goal is
to develop specialized and principled machine learning methods that extract meaningful biological
insights from high-dimensional and multi-modal biomedical data.

My research focuses on developing ML methods to better infer, understand, and model the spatial and network
structure and dynamics of complex biological systems. My work draws on techniques from deep learning, statistical
inference, and graph theory and thus far has addressed three fundamental problems:

Modeling spatial gradients and geometry. Spatial transcriptomics (ST) technologies measure gene expres-
sion at spatial resolution but suffer from high levels of sparsity (> 70% zeros). I introduced gene expression
topography, a fundamentally new mathematical paradigm for modeling spatial gradients and tissue geometry in
sparse ST data. I developed deep learning methods for learning “topographic maps” of 2-D tissue slices [2, 3]. This
work builds on my previous model which introduced complex analysis to spatial biology [4].

Learning biological interactions. Biological networks are highly incomplete (missing ≈ 90% of edges) but
are critical for understanding human health and disease. I developed a statistical framework for learning genetic
interactions from noisy, high-throughput mutational data. I have used my framework to learn novel interactions
between cancer driver mutations [5] (Best Paper Award, RECOMB-CCB) and to learn epistatic interactions in yeast
and proteins, where I corrected a major methodological issue in the epistasis literature and extended the
known trigenic interaction network by 25% [6].

Network anomaly detection. Anomalous interactions between genes/proteins underlie many complex dis-
eases. I developed a unified theoretical framework for anomaly detection in networks and other structured data.
I proved that the most widely-used algorithms for identifying disease modules from protein-protein interaction
(PPI) networks are statistically biased, resolving a nearly 20-year-old open problem in the field [7]. I devel-
oped provably unbiased algorithms for network anomaly detection [8, 9] and structured anomaly detection [10]
which achieve state-of-the-art performance in disease gene identification for cancer and other complex diseases.

My research has made fundamental methodological contributions in machine learning and computa-
tional biology, as recognized by my first-author publications in top machine learning venues (ICML, WSDM)
and computational biology venues (Nature Methods, Cell Systems, RECOMB, ISMB) and my awards (Rising Stars
in Data Science, Siebel Scholars Award, RECOMB-CCB Best Paper Award, NSF GRFP). Moreover, my work is
highly interdisciplinary: in collaboration with biologists, I am using my methods to make novel and impactful
biomedical discoveries in diverse systems including the brain, liver, and tumor microenvironment.

1 Spatial biology

Motivation. Modern advancements in spatial sequencing technologies have enabled the simultaneous collec-
tion of both high-throughput cellular measurements and the spatial location of the measured cells. For example,
spatial transcriptomics (ST) technologies (named “Method of the Year” by Nature Methods in 2020 [11]) measure
the expression of thousands of genes across thousands/millions of spatial locations in a tissue. ST and other spatial
sequencing technologies allow researchers to analyze molecular measurements of human cells and tissues in a
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Figure 1: Highlighted work. (A) Gene expression topography and GASTON algorithm for learning topographic
maps of tissue slices from spatial sequencing data [2]. (B) Using high-throughput mutation data (“mutation ma-
trix”) to learn functional interactions (“genetic interaction network”) [5, 6]. (C) Unified statistical framework for
anomaly detection in networks and other structured data [8, 9, 10].

spatial context, and present exciting opportunities to understand how cells organize and interact in healthy and
diseased tissues (e.g. tumors). However, there are two key challenges in studying spatial biology. First, current
spatial technologies make highly sparse measurements (e.g. > 70% zeros). Second, spatial variation in gene expres-
sion and other molecular measurements results from multiple, unknown spatial processes with different intensities
and scales (e.g. cell-cell interactions or oxygen gradients) which are difficult to model and infer.

Research contributions. I introduced gene expression topography (Figure 1A), a new approach for modeling
spatial variation using sparse ST data [2]. I derive a topographic map of a tissue using the isodepth, a 1-dimensional
coordinate that describes both the geometric arrangement of spatial domains (i.e. clusters) in a tissue slice as well
as the relative position of a single location within a domain. Just as a topographic map of a landscape demarcates
mountains and valleys by their elevation, our topographic map of gene expression delineates spatial domains
within a tissue by their isodepth. Moreover, like elevation of a landscape, the isodepth varies continuously over
a tissue slice, providing a coordinate that describes continuous gradients of gene expression. Gene expression
topography relies on a novel model of spatial gradients parametrized with a conservative gradient field, which
is applicable to many areas of spatial statistics. This work generalizes my previous model of spatial gradients in
layered tissues, where we parametrize the layer depth of a tissue layer (analogous to isodepth) as the real part of
a conformal map [4].

I developed two deep learning algorithms, GASTON [2] and GASTON-Mix [3], for learning topographic maps
of 2-D tissue slices using neural field and mixture-of-expert models, respectively. My methods identify novel spatial
gradients and reveal spatial dynamics of neuronal differentiation/migration and tumor metastasis which
were missed by existing approaches. GASTON was accepted to RECOMB 2024, a top computational biology
conference, and is in press at the journal Nature Methods.

Gene expression topography and GASTON have received much interest from the community. I have been
invited to present GASTON at seminars at the Broad Institute and University of Toronto. Further, I am currently
using GASTON in collaboration with several experimentalists: with Princeton chemists, we are using GASTON to
study spatial gradients of metabolites in the liver and intestine; and with Princeton neuroscientists, we are using
GASTON-Mix to identify differential spatial gradients across the brains of different primate species.

2 Network biology

Motivation. Biological function is organized by physical and functional interactions between genetic variants,
genes, proteins, and other components of biological systems. These interactions form the biological interaction
networks that underlie human health and tissue function, with aberrations in these networks hypothesized to
lead to disease [12]. However, current interaction networks are largely incomplete, e.g. current protein-protein
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interaction networks contain ≈ 2 − 11% of all interactions [13]. To this end, there is a need for methods that
(1) learn biological interaction networks and (2) identify anomalous network interactions that lead to
disease.

Research contributions. I have developed novel mathematical frameworks and algorithms to address both of
these problems. First, I developed a statistical framework for learning genetic interactions, or interactions
in which the function of a genetic mutation is altered by the presence or absence of other genetic mutations,
from high-throughput mutation data (Figure 1B). Specifically, genetic interactions are described by the so-called
“natural” parameters of a multivariate Bernoulli distribution, which describes any distribution on binary strings
[14].

I applied my multivariate Bernoulli framework to two important types of genetic interactions. First, I used my
framework to learn higher-order (> 3-way) genetic interactions (epistasis) in yeast and proteins [6]. I showed that
many papers in the literature – including two recent high-profile papers in Science [15, 16] – incorrectly measure
higher-order epistasis using a “chimeric” formula that erroneously conflates additive and multiplicative scales. I
showed that this widely-used but incorrect epistasis formula corresponds to a parametrization of the multivari-
ate Bernoulli that does not measure epistatic interactions, and that using the correct epistasis formula greatly
changes reported findings of epistasis. In particular, using the correct epistasis formula results in a 25% increase
in known trigenic interactions, thus extending the known trigenic interaction network by 25%. Second, I
used my statistical interaction framework to infer novel pairwise interactions between cancer driver mutations by
parametrizing these interactions using a bivariate Bernoulli. In particular, our model addresses a major deficiency
in nearly a decade of existing methods – the conflation of driver mutations with passenger mutations that do not
contribute to cancer progression – and earned a best paper award at the RECOMB satellite workshop on
cancer genomics. These two lines of work build on my earlier theoretical framework for modeling higher-order
interactions using hypergraphs which is actively used and cited by other machine learning researchers [17].

To address the second problem, I developed a unified theoretical framework for anomaly detection in
networks and other structured data (Figure 1C). My model unifies many existing problems in biology, statis-
tics, and epidemiology, including the problems of identifying disease modules (groups of interacting disease genes)
from protein-protein interaction (PPI) networks. I proved that the two most widely-used algorithms for identifying
disease modules (subnetworks) from PPI networks are statistically biased, in that they identify much larger subnet-
works than expected by chance. My result resolved a nearly 20-year-old open problem in the field on why
these methods consistently returned large subnetworks [7]. I also derived a mathematical characterization of sta-
tistical bias in other structured anomaly detection problems [10]; for example, I showed that the “graph scan statis-
tic”, a standard tool for network anomaly detection in epidemiology, is also statistically biased. I addressed these
deficiencies by developing several provably unbiased algorithms for network anomaly detection which
achieve state-of-the-art performance in disease gene identification for complex diseases including cancer
and schizophrenia [8, 9]. Separately, I developed a mathematical model for anomalous behavior (polarization) in
social network interactions which is well-cited in the social media literature (≈ 200 citations) [18].

Our algorithms for learning and analyzing biological interactions are currently being used for large-scale anal-
ysis of multiple lung cancer samples as a part of The Genomic Data Analysis Network (GDAN) project, demon-
strating the impact of my work.
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